Loading...
18007 VISTA DEL MAR DR.PDFiiiiiiiiii lill 13587 18007 VISTA DEL MAR DR BE PLANNING DATA SINGLE FAMILY RESIDENTIAL 11 Street File Name: Ta vi e,-f f, P- p n ct to I I' 0 Review Date: O -7 • I • 2- Site Address: I$ p 0 7 v f 5 -61 D e l Mar Dr. Permit Number: '� p��_ p +� (p Project Description: N iW S F(Z Zoning: Comp Plan: p LA.V C Corner Lot: ES / NO) Flag Lot: (YES / 0) Small Site Plan: ( ES / NO) ADU Created: (YES / NO) LLA: -- CUP: ^—� Variance: Shoreline: Subdivision/Legal/Recording Number: v i,51-A D cA M aN Legal Nonconforming Land Use Determination Issued: (YES /b Critical Areas Determination #: y OL ddOn AU nns l eyP • 8 13/2 p 1 2- 0 Study Required ❑ Waiver LIlA & Ahhoc iat-e5 SEPA Determination:y fyyl�i1-- Re uired Setbacks SbV 9 treet:' Side: � I 0 � LAR s�. , Rear: 25 Q �v Actual Setbacks Street: ?'S OVO Side: i Gv'Cyi' to Sie-� . /+ Rear: Detached Structures • Rockeries/Retaining Walls • Fences/Trellises/Arbors Bay Windows/Projecting Modulation • > 30" Stairs • Covered Deck/Porch • > 30" Eaves Chimney/Fireplace • Uncovered Unenclosed < 30" Deck/Porch/Patio Parking Required: 2 Parking Provided: ?� �' Coverage Required: 35% Coverage Provided: ?_7 Lot Area: ( l $ Lot Coverage 9 EP Calculations: Buildin Hei ht Datum Point: �K Datum Elevation: Maximum Height: 25' 7j01 -1 i5 Actual Height: 2p -1 1057 c,yd5 C�lafi +- i LP& (-yd s f I I A) 1 cl -3o l?)q y = I�S+112 C.)IDS q� t25'= gra C-VE_I) J�v / cam► MYVA-�,s � �- a GLOW RAt Plan Review By: Gina Coccia, Associate Planner O CA O cn n C O C M m 0 N N W N O th 00Cl) o CD � o CL o N cn m oD DD03O Oo V m O zoo rn -0O D > Z C coC r O N r O > 0 co m 0 O z 0 o N N 0 CD zz 0 0 c� 0 C E Dp ■�� e� e� 117 c . 1890 CITY OF EDMONDS 121 5TH AVENUE NORTH • EDMONDS, WA 98020 • 425-771-0220 • FAX 425-771-0221 Website: www.d.edmonds.wa.us PUBLIC WORKS DEPARTMENT Engineering Division February 8, 2010 Janette Ronquillo 8817 207"' Pl SW Edmonds, WA 98026 MEMO TO: Puget Sound Energy Verizon Northwest SNOCOM Police and Fire Dispatch SNOPAC Snohomish County E911 US Post Office Snohomish County Assessor's Office Snohomish County Information Services Snohomish County PUD GARY HAAKENSON MAYOR Fire District No. 1 Edmonds Police Department Edmonds Utility Billing Edmonds Public Works Edmonds Building/Street File Edmonds Address Files Edmonds Information Services Allied Waste Comcast This letter is to inform you of a street naive change affecting several properties in the City of Edmonds. On February 2, 2010 Edmonds City Council passed Ordinance No. 3782, approving the renaming of Kairez Drive to Vista del Mar Drive. Please update your records to reflect the following: Previous Address New Address Tax ID Number 17802 Kairez Drive 17802 Vista del Mar Drive 00914200000700 17804 Kairez Drive 17804 Vista del Mar Drive 00914200000800 17901 Kairez Drive 17901 Vista del Mar Drive 00914200001100 17903 Kairez Drive 17903 Vista del Mar Drive 00914200000900 17905 Kairez Drive 17905 Vista del Mar Drive 00914200001000 17907 Kairez Drive 17907 Vista del Mar Drive 00914200000600 17909 Kairez Drive 17909 Vista del Mar Drive 00914200000500 17910 Kairez Drive 17910 Vista del Mar Drive 00914200000400 18002 Kairez Drive 18002 Vista del Mar Drive 00914200000300 18004 Kairez Drive 18004 Vista del Mar Drive 00914200000200 18006 Kairez Drive 18006 Vista del Mar Drive 00914200000100 18007 Kairez Drive 18007 Vista del Mar Drive 00914200001200 All of the properties noted above are single-family residential properties recorded as part of the subdivision Vista del Mar. A vicinity snap higlmlighting each of the affected properties in yellow • Incorporated August 11, 1890 • Sister City - Hekinan, Japan 0 has been attached for your reference. In addition, please find attached copies of the Snohomish County Assessor Parcel Data for each of the properties. If you have any questions regarding this letter, please contact me at 425.771.0220 x 1338 or by e-mail at mcconnell(a.ci.edmonds.wa.us. Respectfully, C #s-b-o —InC�n e , A - Jeanie McConnell Engineering Program Manager °E°" Vista Del Mar Properties 94 0 ADDRESSED OFF 178TH PL SW ADDRESSED OFF KAIREZ DR 100 200 Feet 11 I I 1 By. GC/01.13.2010 N W E s Snohomish County, WA Asse## Parcel Data . Pagel of 2 Snohomishftllne Government Information & Services County4* Washington Y R E A L x Property Information Coup , Home Assessor Home Treasurer Home Information on which Department to contact Please view Disclaimer If you have questions, comments or suggestions, please Contact Us. Date/Time:2/8/2010 1:13:37 PM Answers to Frequently Asked Questions about Parcel Data (opens as new window) Return to Property Information Entry_page Parcel Number 00914200001200 Prev Parcel Reference View Mau of this parcel (opens as new window) General Information Taxpayer Name 11 Address (contact the Treasurer if you have questions) RONQUILLO JANETTE 118817 207TH PL SW - - - EDMONDS, WA 98026-6678 If the above mailing address is incorrect and you want to snake a change, see the information on Name and Address Changes Owner Name II Address (contact the Assessor if you have questions) RONQUILLO JANETTE 118817 207TH PL SW - - - EDMONDS, WA 98026-6678 If the above name and address is incorrect due to a recent sale, please see the information on Name and Address Changes After a Sale Street (Situs) Address (contact the Assessor if you have questions) 18007 KAIREZ DR - - - EDMONDS, WA 98026-5341 Parcel Legal Description Section 18 Township 27 Range 04 Quarter NW VISTA DEL MAR BLK 000 D-00 - LOT 12 TGW EQ & UND INT 1N KAIREZ DR Go to top of page Treasurer's Tax Information Taxes For answers to questions about Taxes, please contact the Treasurer's office (opens as new window) 2010 Taxes for this parcel $2,262.34 (Taxes may include Surface Water Management and/or State Forest Fire Patrol fees and any fees related to late payments. LID charges, if any, are not included.) To obtain a duplicate tax statement, either download our Tax Statement Request form or call 425-388-3366 to request it by phone. Go to top of page Assessor's Property Data Characteristics and Value Data below are for 2010 tax year. Please contact the Treasurer's office for answers to questions about Taxes (opens as new window) For questions ONLY about property characteristics or property values (NOT taxes), please contact the Assessor's Office Property Values do not reflect adjustments made due to an exemption, such as a senior or disabled persons Values exemption. http://web5.co. snohomish.wa.us/propsys/asr-tr-propinq/Prp1ngO2-ParcelData.asp?PN=0091... 2/8/2010 Snohomish County, WA Ass r Parcel Data 0 0 Reductions for exemptions are made on the property tax bill. Tax Year 2010 Market Land $257,800 Market Improvement $0 Go to top of page Valuation, Payment, and Property Tax History View Histo (opens as new window) Go to top of page Property Characteristics Tax Code Area (TCA) 00217 View Taxing Districts for this Parcel (opens as new window) Use Code 910 Undeveloped (Vacant) Land Size Basis ACRE Size 0.38 (Size may include undivided interest in common tracts and road parcels) Go to top of page Property Structures No structures found for this parcel Go to top of page Property Sales since 7/31/1999 Explanation of Sales Information (opens as new window) Market Total Page 2 of 2 Sales data is based solely upon excise affidavits processed by the Assessor. Transfer Receipt Sales Price Excise Deed Grantor (Seller) Grantee (Buyer) Other Date Date Number Type Parcels 5/5/2006 5/15/2006 $430,000 204161 W VISTA DEL MAR LLC RONQUILLO JANETTE No 3/9/2001 3/12/2001 $0 262930 QC GEORGE KAIREZ VISTA DEL MAR LLC No Go to top of page Property Maps Township/Range/Section/Quarter, links to maps Neighborhood 1504000 Explanation of Neighborhood Code (opens as new window) Township 27 Range 04 Section 18 Quarter NW Find parcel maps for this Township/Range/Section View Map of this parcel (opens as new window) $257,800 http://web5. co. snohomish.wa.uslpropsyslasr-tr-propinglPrpIngO2-ParcelData. asp?PN=0091 2/8/2010 l 8C67 Vi el mar Detention Sizing, Calculations for. 18007 Vista Del Mar Drive a 1-lot single-family detached residence. at 18007 Vista Del Mar Drive Edmonds, WA 98026 City Building Permit # BLD-2012-0446 July, 2012 REVISED August, 2012 Prepared for: Ronscott Construction, Inc. 760 Daley Street Edmonds, WA 98020. 01C0 4989RES� ,4x. U AUG 13 2012 �ONVL BUILDING D PARt77MENi CITY OF ENDS Prepared By: Jerry O'Connell LM ■ ■ Lovell-Sauerland & Associates , 5921736`h Avenue W., Bldg-B, Suite. l06 Lynnwood, Washington 98036 LSA FILE No: 5358 STRE ET9LE . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Detention Sizing Calculations for 18007 Vista Del Mar Drive a 1-lot single family detached residence at 18007 Vista Del Mar Drive Edmonds, WA 98026 City Building Permit # BLD-2012-0446 July, 2012 REVISED August, 2012 Prepared for: Ronscott Construction, Inc. 760 Daley Street Edmonds, WA 98020 Prepared By: Jerry O'Connell VEEN LM ■ ■ Lovell-Sauerland & Associates 19217 36`h Avenue W., Bldg-B, Suite 106 Lynnwood, Washington 98036 LSA FILE No: 5358 ' Section 1: Project Information Project Name: 18007 Vista Del Mar Drive Residence ' Project Site Address: 18007 Vista Del Mar Drive Edmonds, WA 98026 ' City File Number: BLD# 2012-0446 Project Engineer: g Lovell-Sauerland & Associates Inc. > ' 19217 36th Avenue W., Bldg. B - Suite 106 Lynnwood, Washington 98036 Phone: (425) 775-1951 rProject Applicant: Ronscolt Construction, Inc. 761 Daley Street Edmonds, Washington 98020 ' Contact: Scott Schrieber Phone: 425-673-016 Project Total Area: 0.269 Acres Number of Lots: 1 - single family residence Soils Data: Alderwood-Urban land complex 45 per Sheet #56 of SCS Soil Survey of Snohomish County (type `C' DOE soils group) City Drainage Watershed: Site is within the direct discharge watershed of Puget Sound Piped Site Classification: Category 1 Small Site Lovell-Sauerland & Associates 18007 Vista Del Mar Dr Detention Sizing Calculations #BLD-2012-0446 ' LSA#5358 August,2012 1 Section 2: Detention Sizing The site is lot 12 of the Vista Del Mar plat. The plat is served by an existing detention system sized for 5,000sf per lot. The Applicant is proposing to construct a single family residence (and related impervious surfaces) with total impervious area of 5,989sf. Therefore, 989sf (the driveway) requires mitigation subject to the City's Figure-B `Project Classification' flowchart. Related backup material, including the original drainage report for the Vista Del Mar Plat, has been included in this report. Lovell-Sauedand & Associates Detention Sizing Calculations LSA#5358 18007 Vista Del Mar Dr #BLD-2012-0446 August, 2012 1 I Lovell-Sauerland & Associates Detention Sizing Calculations LSA#5358 Appendix 18007 Vista Del Mar Dr #BLD-2012-0446 August, 2012 y �,t t t t� it a-'4'.� `` tr r' ;"' -'�"z! 5 'tom �' •..t.� - y J.i 5 -Ch no , A'--.._'ra 77- ���'�' #s Yrt" y e , yAn~!a r z ' 46 A �+i & E` {,?�' � �`z r 1 � y ,�` } a� �,4� `--c �x � � k:. � b` , } ,�Y�`" ,.• ; �-ti. � 3 � '�" � z t r `� �' ;' " � � � _k._'. 5.., 7(}'y �;�^`.ti,i�.y�+' 73.a a'Pj es'Nad 0'r .�.r� iT IOU Avc lot A T` ,a .s-Pool k:..r+9. F s two. t "'s+l` a? "=r''"`''•c _.y`� "�•"t YRx j tv- lY'� e ', -s' rr. ti+, "�` A'sa i"'�, x�..:. '.w3. '�t' �4,� 3�3�� �" `�'� xiv+ �-- � -k.K � v� '` �v ��.n u � �s-.�•�r�.-r �� � . .��„/��Q� I�u�l�:.�;rt� 1 City of Edmonds Site Classification Workaheet Page 1 of 2 The project's Site Classification will dictate the specific stormwater management requirements applicable to your site. Completing this worksheet will help determine the amount of regulated impervious surface and whether your project falls into the classification of a Small Site (Category I or Category 2), or a Minor Site. Please reference the Glossary (pp. 10-11), Figures D and E, (pp. 8-9), and Examples (pp. 12-13), to assist with completion of this work -sheet. 1) Is Permeable Pavement' Proposed For Use on this Site? [x Yes 0 No Refer to Stormwater Supplement Chapter 5.1 If YES, the subject area is to be considered impervious for initial site classification purposes. Include total permeable pavement area in the calculation of Non -Regulated, Replaced and/or New impervious surface areas in the table below. 2) Determine the Amount and Type of Existing & Proposed Impervious Surface for the Site Refer to Storm water Supplement Chapter 2 and Fig. C Line 1: Identify the Non -Regulated Impervious Surface Area. Line 2: Identify the Replaced Impervious Surface Area, dividing the total between Exempt and Regulated; either or both may be zero. Note: For project classification purposes, Replaced Impervious may only be considered exempt under certain conditions. Refer to the Glossary and Figure D. Line 3: Identify the New Impervious Surface Area for your project. All impervious areas created post -July 7, 1977 or after the date of annexation into the City are regulated & should be included in this total unless they can be categorized separately as a Replaced -Regulated area. Line 4: Enter the sum of the total Replaced -Regulated plus the total New impervious areas. Line 5: Identify the total area currently mitigated by an existing city -approved stormwater management system. Line 6: Enter the sum of the value in Line 4 less the value in Line 5 to identify the total Regulated area in which stormwater controls have not yet been applied. Line 7: Identify the total area proposed to be mitigated through the use of Low Impact Development Techniques. Line 8: Identify the total area proposed to be mitigated through conventional Stormwater Management Techniques. ** Provide a copy of the following table on the drainage plan sheet for the proposed project ** Line Type Area (square feet) 1. Non -Regulated] Exempt Regulated 2. Replaced 3. 4. New (Post 1977) 444 Total Regulated Impervious Area f Mitigation required if in excess of 2000s + 5, 989 S f = 5, 989 S f 5. w .-r 6. Total Area Mitigated by Existing Stormwater Management System(s) +. -r.t.•>J..JA'.r4PA?s<•:eP.r ./+J..: .+.'-..--, ". ,•.-. v:fil vr.•. Regulated Area Not Yet Mitigated 5, 000 S f = 989 S f 7. Area Proposed to be Mitigated by Low Impact Development Techniques = 0 8. Area Proposed to be Mitigated through Conventional SWM Techniques = 989 S f t (e g. porous asphalt, porous concrete, paver blocks, concrete open celled paving grids, or plastic lattices filled with turf or stone) Revised on 4121111 E72-SWM_Erosion_Control-Drq%t-04.21.11-FINAL Page S of 13 City of Edmonds "'° Site Classification Worksheet v ` Page 2 of 2 3) Determine the Total Area of Land Disturbing Activity 12, 300 sf Refer to Stormwater Supplement Chapter 8 14) Determine the Quantity of Grading, Fill and/or Excavation 12 2 3 cY I cut=1,057/fil1=166cy 5) Will the project convert'/a Acre or More of Native Vegetation to Lawn or Yes El No Landscaped Area? 6) Identify the Watershed the E, xisting Site Runoff Discharges to Refer to Stormwater Supplement Chapter 2.3 Based on Site Location and Watershed Map — Figure-C. Check all that apply.. A. 0 Direct Discharge B. ❑ Creek or Lake Basin o Edmonds Way Basin ❑ Puget Sound Basin :m Puget Sound Piped Basin DETERMINE PROJECT CLASSIFICATION USING THE INFORMATION ABOVE AND THE PROJECT CLASSIFICATION CHART (Figure B, pg 4) ❑ Small Site - Category 1 N Small Site - Category 2 O Minor Site Stormwater Supplement Stormwater Supplement Stormwater Supplement Chapter S Chapter 5 Chapter 6 Revised on 4121111 E72-SWM_Erosion__Control-Draft-04.21.II-FINAL page 6 of 13 J APlztam0 Figure2-1: Project Classification Start' Does the project involve l- yes acre or more of land - No Yes Is the project part of a larger common plan of development or sale where the total disturbed area for the entire plan will total 1-acre or more of land-disturbjAgactivity? No Does the Proje 'nboI6e ne or more of the Yes following: 2,000 square feet or more of new impervious surface, replaced impervious surface or new plus replaced impervious surface? OR 7,000 square feet of land -disturbing activity? OR 50 cubic yards or more of either grading, fill, or excavation as defined in Chapter 18.40.000 ECDC? Large Site Project: Read Chapter 3 and see Chapter 4 for requirements Does the project create or add 5,000 square feet of new impervious surface, replaced impervious surface or new plus replaced impervious surface? OR Convert'/. acre or more of native vegetation to lawn or landscaped area OR Through a combination of creating effective impervious surface and converted pervious surfaces, causes an increase of 0.1 cubic feet per second in the 100-year flow frequency from a threshold discharge area as estimated using an approved It oriel? No I l I Yes No Category 1 Small Site Project: Category 2 Small Site Project: Read Chapter 3 and see Chapter 5 Read Chapter 3 and see Chapter Minor Site Project: for requirements 5 for requirements Read Chapter 3 and see Chapter 6forrequirements ***site adds 5, 989sf of impervious S,000sf is mitigated by existing system; 989sf will be mitigated per the City's Figure-b-flowchart. 1 Assumes the project in question meets applicability requirements of ECDC18.30.030. 2.0 CLASSIFYING PRWECTS 5 FIGURE B - I n CITY OF EDMONDS /V iL�tndsSGtiic�i ,y" �c WATERSHEDS Deer Creek : Perrinviile S Edmonds Marsh. Puget Sound e s1-k1lAead4wt�le Edmonds Way Puget Piped g Sound M a�CtOWddyE�.o`-s�i Fruitdale i L Shell Creek -` �`� �/e Rd: Good Hope Pond ; Shellabarger z--4 isatnsrs - Halls Creek i , Southwest Edmonds A " IA _ -tdt :._ Hindley Creek Lake Ballinger Southwest Edmonds B Stilthouse Creek hja-1 e u --� •t :w. Outfa1 Cr eK �� use ..� - Lund's Gulcht Talbot Park A tamo�Q'a..,�>~� / ,j Meadowdale A Talbot Park 8 'r MeadowdaleB Terrace Creek Terrace Creek . Northstream Westgate Pond - OutfailCreek _. Willow Creek i_ 1{ rot; 0 1,001 2,00o s,000 6OOD eoco Feet < 3 W ". PerrinVllle `a Puge,f oUnd -- � 11n=2,000h ': �-Talbot Park;A ; Q^�c•wn.{ . /Talbot Park B 3- '.'N. warranty of airy swt, tnttudin6 acc—v, taness, nr merchantahaily mcmnpany this product �h 1 •Fruitdale i 3 N � i d _ 4 J ' LT.PIB�etD aw • , 1 -;. ,- sI Northstream 1 CaspM.St 2aoth St SW •� a �I. �WFndley '� . i F t g �P:2•P� Y.: Good Hope Pond 1 44 3�t - .I � FF 206th St SW ' �y-Mania J rV+r L _ t - w h. _ __208th s�tiw .. U a - N-aowtbin Wy . Li.,t Shell Creek : i" Zinn St sw �7. Shelfo-Wrger.'. _ a` �' d . m 4 AlVestgate Pond Halls Creek �•c_ -Willow Creek 224th St SW ;A 06— Creek w 7311t St SW Wachussrrn Rd 1'!i A-'Xy{,_ ' .\ _—_—_— I "t . Ky Edmonds Way ` SKithwestifdrridnfiAl. t r r*� V a Lake Ballinger. t r.0 uJ' ZaOth StSW. r 5{2uthwest Edmon0s t �.. l m P+-7 . LOVELL-SAUERLAND & ASSOCIATES, INC. 19400 33rd Avenue W. Lynnwood, WA 98036 REVISED DETENTION STORAGE CALCULATIONS AND DRAINAGE BASIN REPORT FOR PLAT OF VISTA DEL MAR on Olympic View Drive at 92nd Avenue West, Edmonds Prepared By: CONTENT OF REVISION ' The drainage and detention was reevaluated based on the detention pipes being linked in series rather than in parallel. Also, the peak runoff rate from the bypass has been corrected. Both changes resulted in a lower detention requirement. Even so, the designed ' detention systems remain at the orignal size, providing a moderate factor of safety against overtopping. The changes will be seen in the calculations and calculation summary. ' PROPOSED DEVELOPMENT AND EXISTING CONDITONS The project consists of the subdivision of several contiguous land parcels into ' approximately 15 lots for construction of single family dwellings. Subdivision improvements would include the construction of public and private roads, utilities, and a storm water collection system. ' The properties are situated at the top of a bluff adjacent to Puget Sound. A 100-foot wide Burlington Northern Railroad right-of-way lies between Puget Sound and the property. The ' site is currently occupied by two houses and some small out -buildings. ' The smaller of the houses lies at the south boundary of the site, and is accessed by an off -site private road from the south. The larger house lies near the center of the site, and is accessed by a ' looped driveway having a total length of about 1000 feet. About a half of the site is clear of trees and brush, and has historically been lawn with large ' landscape shrubs and trees. The remainder of the site is covered with second growth evergreen forest. ' Existing Sanitary sewer and storm drainage systems cross the northernmost portion of the site. The northern portion of the site is accessed by easement through an adjacent single ' family lot. EXISTING DRAINAGE CONDITIONS ' All surface runoff from the site eventually drains to the drainage ditch in the BNRR right-of-way. Most is apparently transported by direct overland flow, but some from the site's forested area is possibly collected in the private systems to the south. These private systems would also eventually discharge in the same BNRR ditch. The ditch drains to the 18-inch culvert crossing under the tracks adjacent to the site. The northernmost end of the piped storm drainage system crossing the site discharges into Puget sound just north of the site. It drains a basin which includes roughly 155 acres, ' but does not currently include any significant portion of the site. This basin is discussed in detail below, as it is proposed to use this system to convey future developed runoff. I A study of the overall basin was completed by URS Consultants for the City of Edmonds, Lovell-Sauerland and Associates October 29, 1996 Page 2 as documented in their report "Edmonds Drainage Basin Studies" dated June 1989. The basin was one of several subbasins identified in the Talbot Park Drainage Basin. ' Portions of the study relating to this basin were provided in a preliminary report to the City dated 4/23/93 (by Lovell-Sauerland). It was noted that the elements in the area of the ' project in general had sufficient capacity to convey the 100 year storm in a future "built -out" basin. Upstream system capacities (above the proposed development) fall well short of the requirements for this particular design storm. ' DRAINAGE ISSUES The drainage improvements must address two basic issues. First, it is considered desirable to reduce or eliminate surface runoff onto or near the face of the bluff. In particular, concentrated flows from impervious areas must be collected and safely ' conveyed so as not to increase erosion on the face of the bluff. Due to the BNRR right-of-way and the intolerance the BNRR has demonstrated for ' improvements by others in land they control, and due to the steepness of the bluff sloping to the BNRR right-of-way, it is not considered feasible to convey storm runoff by any new piped system to Puget Sound, or to the BNRR ditch_ Storm runoff must be conveyed by pipe to the existing storm sewer crossing the property. The proposed runoff collection system accomplishes this. ' The second issue is whether the runoff can be released without control or whether it must first be detained to match existing peak runoff levels. To answer this, the capacity needs ' of the upstream basin and available capacity of the downstream system were reviewed. The details of this study are at the end of this report in Appendix A. The study showed that even at a maximum capacity of 55 cfs, the last pipe in the downstream system is still undersized for the 100-year peak runoff from the basin of 65.63 cfs. Therefore, the Vista Del Mar project will require detention to comply with city code. The detention will not eliminate the potential flooding, but will mitigate any possible impact by the Vista Del Mar development. ' In summary, given the apparent lack of downstream pipe capacity, the project will need to provide detention for the plat because: I 1. The entire upstream basin produces a calculated runoff greater than the capacity of that pipe, and ' 2. Even though the pipe network feeding that pipe is of a lower capacity, it cannot be guaranteed on paper that the combination of pipe and gutter flow would not deliver enough water to overflow it. It also cannot be guaranteed that the City won't correct ' the existing upstream capacity deficiencies. I Lovell-Sauerland and Associates October 29, 1996 Page 3 1 3. The potential flooding of the BNRR property is an existing situation which may occur, with or without the plat. Construction of the plat will likely result in a small ' incremental increase in the probable maximum flow. 4. Construction of a detention system for the plat will not eliminate this problem. It will ' only mitigate the new plat's share of the problem, and "prove" that the plat is not a contributor to future flooding. ' Since there is a potential downstream problem, which the plat may aggravate, the letter of the code must be fulfilled to limit future liability. ' DETENTION CALCULATIONS Calculations and the drainage plan were completed to meet City of Edmonds 1995 ' standards, using an SCS-SBUH analysis. Since there is no downstream natural watercourse, the criteria used includes restriction of 10-year and 100-year flows to match the existing runoff for each of those events. The model used for the analysis is called ' WaterWorksTM, which was developed by Engenious Systems Inc. The program generates runoff hydrographs for each design basin area and allows them to be routed through various configurations of storage and discharge structures. Through a process of trial and ' error, a configuration is found that meets the criteria for the design storm. Due to the topography of the site, two detention pipes and a water quality swale are proposed. All of the impervious areas of the site will be conveyed by the biofiltration swale. About a 1/4 acre of the site bypasses the detention facilities, but the calculations ' demonstrate that the release criteria are met by comparing the sum of all developed release hydrogaphs with the existing site runoff. It is noted that although the sum of pipe discharges and the bypass peak flows exceed the allowable discharge, the peaks do not all occur at the same time and the peak of the total discharge hydrograph is less. Assumptions used for the detention calculation include: ' 1. Site soils are of hydrologic group "C" ' 2. One offsite house will drain to the detention system, making a total of 3 existing homes. The total existing impervious area on and offsite is over 20,000 square feet. However, it is assumed that only 5,000 sf per home exists for the existing homes on ' the site. New impervious is assumed to be the area of the roads, plus 5,000 sf per lot. ' 3. The design storms are per the City's new ordinance. 4. Yard areas of lots 7-10 and 13-15 are already grass, and have been historically. The hydrologic character of these areas will not change, and they are not included in the calculation. Runoff from these areas can be routed to the drainage system if Lovell-Sauerland and Associates October 29, 1996 Page 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 needed, but have anegligible effect on the detention system. 5. Existing conditions are assumed to be 50 percent second growth forest and 50 percent meadow (with some existing impervious). SCS weighted average curve number calculations, are attached. Detailed detention storage calculations follow. A. DETENTION SUMMARY TABLE l 5's. s,1 Recurrence interval:.. f,M' _,1OYearu ,1,OOYear Exist. development area runoff 0.40 cfs 0.92 cfs Peak pipe design discharge Pipe in Kairez Drive 0.24 cfs 0.55 cfs Pipe in Nicholas Lane 0.35 cfs 0.82 cfs Peak runoff from bypass area 0.11 cfs 0.16 cfs Design discharge (detention 0.39 cfs 0.89 cfs pipes + bypass) Required detention storage Pipe in Kairez Drive 3,057 cf 4,785 cf Pipe in Nicholas Lane 1,508 cf 1,823 cf Provided Pipe in Kairez Drive 6,000 cf Pipe in Nicholas Lane 2,500 cf Note: Since the waterworks program does not model CMPA, and does not allow the inclusion of structures, the ultimate detention pipe configuration is based on the attached spreadsheets labelled "Detention pipe for Nicholas Lane" and "Detention pipe for Kairez Place." These provide the final pipe and orifice size and location. Lovell-Sauerland and Associates October 29, 1996 Page 5 sk ' B. DETENTION CALCULATION DETAILS -- Waterworks printout ' This run uses the two detention pipes in series instead of in parallel. The net result is a slight decrease in the necessary detention storage volume from the original arrangement. The pipe sizes have not been changed from the original design, to allow ' some additional factor of safety, and to give more flexibility in regard to the final impervious areas on the detained and bypass basins. ■ Waterworks batch file: MOVE 10B TO 3 ' MOVE OOB TO 13 MOVE 10E TO 9 MOVE OOE TO 19 MOVE 1OFN TO 4 ' MOVE OOFN TO 14 LPOOL 1 "10-YEAR KAIREV 10E 10FK PIPEK CTRLK 1 LPOOL 2 "100-YEAR KAIRE V OOE OOFK PIPEK CTRLK 11 ADD 1 4 5 ' ADD 11 14 15 LPOOL 4 "10-YR NICHOLAS" 10E 5 PIPEN CTRLN 2 LPOOL 5 "100-YR NICHOLAS" OOE 15 PIPEN CTRLN 12 ADD 2 3 10 ADD 12 13 20 n I Lovell-Sauertand and Associates October 29, 1996 Page 6 ' 10/29/96 Lovell-Sauerland & Associates Inc page 1 ' BASIN ID: OOB BASIN NAME: 100-YEAR SUMMARY DEVELOPED BYPASS SBUH METHODOLOGY ' TOTAL AREA.......: RAINFALL TYPE....: 0.27 Acres TYPEIA BASEFLOWS: 0.00 cfs PERVIOUS AREA PRECIPITATION....: 3.00 inches AREA..: 0.00 Acres TIME INTERVAL....: 10.00 min CN.... : 85.50 TIME OF CONC.....: 10.00 min IMPERVIOUS AREA ' ABSTRACTION COEFF: 0.20 AREA..: 0.27 Acres CN....: 98.00 PEAK RATE: 0.16 cfs VOL: 0.06 Ac-ft TIME: 480 min BASIN ID: OOE NAME: 100-YEAR EXISTING SBUH METHODOLOGY TOTAL AREA.......: 3.99 Acres BASEFLOWS: 0.00 cfs ' RAINFALL TYPE....: TYPEIA PERVIOUS AREA PRECIPITATION....: 3.00 inches AREA..: 3.65 Acres ' TIME INTERVAL._..: TIME OF CONC.....: 10.00 min 31.11 min CN....: IMPERVIOUS 82.80 AREA ABSTRACTION COEFF: 0.20 AREA..: 0.34 Acres CN.... : 98.00 TcReach - Sheet PEAK RATE: 0.92 L: 280.00 ns:0.4000 cfs VOL: 0.51 p2yr: 1.50 s:0.1600 Ac-ft TIME: 490 min BASIN ID: OOFK NAME: 100-YEAR DEVELOPED KAIREZ LANE ' SBUH METHODOLOGY TOTAL AREA.......: 2.71 Acres BASEFLOWS: 0.00 cfs RAINFALL TYPE....: TYPEIA PERVIOUS AREA PRECIPITATION....: 3.00 inches AREA..: 1.22 Acres ' TIME INTERVAL....: 10.00 min CN.... : 85.50 TIME OF CONC.....: 14.60 min IMPERVIOUS AREA ABSTRACTION COEFF: 0.20 AREA..: 1.49 Acres CN.... : 98.00 ' TcReach - Sheet L: 290.00 ns:0.1500 p2yr: 1.50 s:0.1600 PEAK RATE: 1.23 cfs VOL: 0.51 Ac-ft TIME: 480 min 10/29/96 Lovell-Sauerland & Associates Inc page 2 BASIN SUMMARY BASIN ID: OOFN NAME: 100-YEAR DEVELOPED NICHOLAS LN SBUH METHODOLOGY TOTAL AREA.......: 1.02 Acres BASEFLOWS: 0.00 cfs RAINFALL TYPE....: TYPEIA PERVIOUS AREA PRECIPITATION....: 3.00 inches AREA..: 0.00 Acres TIME INTERVAL....: 10.00 min CN.... : 85.50 TIME OF CONC.....: 10.00 min IMPERVIOUS AREA ABSTRACTION COEFF: 0.20 AREA..: 1.02 Acres CN.... : 98.00 PEAK RATE: 0.61 cfs VOL: 0.23 Ac-ft TIME: 480 min ILovell-Sauerland and Associates October 29, 1996 Page 7 1 BASIN ID: 10B NAME: 10-YEAR DEVELOPED BYPASS SBUH METHODOLOGY TOTAL AREA.......: RAINFALL TYPE....: 0.27 Acres TYPElA BASEFLOWS: 0.00 cfs PERVIOUS AREA PRECIPITATION....: 2.00 inches AREA..: 0.00 Acres TIME INTERVAL....: 10.00 min CN...... 85.50 ' TIME OF CONC.....: ABSTRACTION COEFF: 10.00 min 0.20 IMPERVIOUS AREA..: AREA 0.27 Acres CN.... : 98.00 PEAK RATE: 0.11 cfs VOL: 0.04 Ac-ft TIME: 480 min BASIN ID: 10E NAME: 10-YEAR EXISTING SBUH METHODOLOGY TOTAL AREA.......: 3.99 Acres BASEFLOWS: 0.00 cfs ' RAINFALL TYPE....: TYPElA PERVIOUS AREA PRECIPITATION....: 2.00 inches AREA..: 3.65 Acres TIME INTERVAL....: 10.00 min CN.... : 82.80 TIME OF CONC.....: 31.11 min IMPERVIOUS AREA ' ABSTRACTION COEFF: 0.20 AREA..: 0.34 Acres CN....: 98.00 TcReach - Sheet L: 280.00 ns:0.4000 p2yr: 1.50 s:0.1600 PEAK RATE: 0.40 cfs VOL: 0.26 Ac-ft TIME: 490 min 10/29/96 Lovell-Sauerland & Associates Inc page 3 BASIN SUMMARY BASIN ID: 10FK NAME: 10-YEAR KAIREZ DEVELOPED SBUH METHODOLOGY TOTAL AREA.......: 2.71 Acres BASEFLOWS: 0.00 cfs RAINFALL TYPE....: TYPElA PERVIOUS AREA PRECIPITATION....: 2.00 inches AREA..: 1.22 Acres TIME INTERVAL....: 10.00 min CN.... : 85.50 TIME OF CONC.....: 14.60 min IMPERVIOUS AREA ABSTRACTION COEFF: 0.20 AREA..: 1.49 Acres CN.... . 98.00 TcReach - Sheet L: 290.00 ns:0.1500 p2yr: 1.50 s:0.1600 PEAK RATE: 0.72 cfs VOL: 0.30 Ac-ft TIME: 480 min BASIN ID: 1OFN SBUH METHODOLOGY TOTAL AREA.......: RAINFALL TYPE....: PRECIPITATION....: ' TIME INTERVAL....: TIME OF CONC.....: ABSTRACTION COEFF: NAME: 10-YEAR DEVELOPED NICHOLAS 1.02 Acres BASEFLOWS: 0.00 cfs TYPElA PERVIOUS AREA 2.00 inches AREA..: 0.00 Acres 10.00 min CN.... : 85.50 10.00 min IMPERVIOUS AREA 0.20 AREA..: 1.02 Acres PEAK RATE: 0.40 cfs VOL: CN.... . 98.00 0.15 Ac-ft TIME: 480 min ILovell-Sauerland and Associates October 29, 1996 Page 8 1 10/29/96 Lovell-Sauerland & Associates Inc page 4 HYDROGRAPH SUMMARY PEAK TIME VOLUME HYD RUNOFF OF OF Contrib 1 NUM RATE PEAK HYDRO Area cfs min. cf-AcFt Acres 10-year ' 1 0.243 590 13185 cf 2.71 2 0.354 600 19731 cf 3.73 3 0.105 480 1733 cf 0.27 4 0.398 480 6546 cf 1.02 ' 5 0.521 480 19731 cf 3.73 9 0.399 490 11207 cf 3.99 10 0.394 520 21464 cf 4.00 100-year 11 0.553 550 22083 cf 2.71 12 0.816 510 32308 cf 3.73 13 0.162 480 2704 cf 0.27 ' 14 0.612 480 10213 cf 1.02 15 0.893 480 32297 cf 3.73 19 0.921 490 22284 cf 3.99 ' 20 0.895 510 35111 cf 4.00 10/29/96 Lovell-Sauerland & Associates Inc STAGE STORAGE TABLE UNDERGROUND PIPE ID No. PIPEK Description: PIPE IN KAIREZ DRIVE Diameter: 7.50 ft. Length: 110.00 ft. Slope...: 0.0100 ft/ft Kairez detention release Nicholas detention release Bypass area runoff Nicholas undetained future 1 + 4 Existing site runoff Total developed releases Kairez detention release Nicholas detention release Bypass area runoff Nicholas undetained future 1 + 4 Existing site runoff Total developed releases page 5 STAGE <---- STORAGE ---- > STAGE <---- STORAGE ---- > STAGE <---- STORAGE ---- > STAGE <---- STORAGE ---- > (ft) ---cf--- --Ac-Ft- (ft) ---cf-----Ac-Ft- (ft)---cf--- --Ac-Ft- (ft)---cf--- --Ac-Ft- ------------------------ 146.00 146.10 0.0000 0.5751 0.0000 0.0000 148.20 148.30 815.50 883.02 --------------- 0.0187 0.0203 150.40 150.50 2512 2593 0.0577 0.0595 152.60 152.70 4174 4237 0.0958 0.0973 1 146.20 3.2399 0.0001 148.40 951.99 0.0219 150.60 2674 0.0614 152.80 4297 0.0986 146.30 8.8909 0.0002 148.50 1022 0.0235 150.70 2756 0.0633 152.90 4355 0.1000 146.40 18.176 0.0004 148.60 1094 0.0251 150.80 2836 0.0651 153.00 4411 0.1013 146.50 31.621 0.0007 148.70 1167 0.0268 150.90 2918 0.0670 153.10 4464 0.1025 ' 146.60 49.670 0.0011 148.80 1241 0.0285 151.00 2997 0.0688 153.20 4514 0.1036 146.70 72.717 0.0017 148.90 1316 0.0302 151.10 3077 0.0706 153.30 4560 0.1047 146.80 101.10 0.0023 149.00 1392 0.0319 151.20 3157 0.0725 153.40 4602 0.1057 146.90 135.13 0.0031 149.10 1468 0.0337 151.30 3236 0.0743 153.50 4639 0.1065 147.00 175.09 0.0040 149.20 1546 0.0355 151.40 3314 0.0761 153.60 4685 0.1076 ' 147.10 221.23 0.0051 149.30 1624 0.0373 151.50 3391 0.0779 153.70 4725 0.1085 147.20 257.27 0.0059 149.40 1703 0.0391 151.60 3468 0.0796 153.80 4759 0.1092 147.30 299.51 0.0069 149.50 1782 0.0409 151.70 3544 0.0814 153.90 4787 0.1099 147.40 345.98 0.0079 149.60 1862 0.0428 151.80 3619 0.0831 154.00 4810 0.1104 147.50 395.94 0.0091 149.70 1942 0.0446 151.90 3693 0.0848 154.10 4828 0.1108 ' 147.60 448.93 0.0103 149.80 2024 0.0465 152.00 3766 0.0864 154.20 4842 0.1112 147.70 504.59 0.0116 149.90 2104 0.0483 152.10 3837 0.0881 154.30 4851 0.1114 147.80 562.71 0.0129 150.00 2185 0.0502 152.20 3908 0.0897 154.40 4857 0.1115 147.90 622.99 0.0143 150.10 2267 0.0520 152.30 3977 0.0913 154.50 4859 0.1116 148.00 685.32 0.0157 150.20 2348 0.0539 152.40 4044 0.0928 154.60 4860 0.1116 148.10 749.54 0.0172 150.30 2430 0.0558 152.50 4110 0.0944 Lovell-Sauerland and Associates October 29, 1996 Page 9 1 10/29/96 Lovell-Sauerland & Associates Inc page 6 ' UNDERGROUND PIPE ID STAGE STORAGE TABLE No. PIPEN Description: PIPE IN NICHOLAS LANE Diameter: Slope...: 5.00 ft. 0.0100 ft/ft Length: 110.00 ft. STAGE STORAGE =--->--- (ft)---cf-----Ac-Ft- STAGE STORAGE ---->--- (ft)---cf-----Ac-Ft- STAGE (ft) ---cf-----AC-Ft- STORAGE =--->--- STAGE (ft) ---cf-----Ac-Ft- STORAGE =--->--- ------ 95.00 0.0000 0.0000 -<--c- 96.60 354.12 0.0081 -<---- 98.20 1160 0.0266 ------ 99.80 1922 0.0441 95.10 0.4686 0.0000 96.70 397.19 0.0091 98.30 1214 0.0279 99.90 1955 0.0449 ' 95.20 95.30 2.6343 7.2150 0.0001 0.0002 96.80 96.90 441.89 488.10 0.0101 0.0112 98.40 98.50 1267 1320 0.0291 0.0303 100.00 100.10 1984 2020 0.0455 0.0464 95.40 14.717 0.0003 97.00 535.57 0.0123 98.60 1372 0.0315 100.20 2052 0.0471 95.50 25.549 0.0006 97.10 584.17 0.0134 98.70 1424 0.0327 100.30 2079 0.0477 95.60 40.040 0.0009 97.20 633.84 0.0146 98.80 1476 0.0339 100.40 2102 0.0482 95.70 58.480 0.0013 97.30 684.26 0.0157 98.90 1526 0.0350 100.50 2120 0.0487 95.80 81.113 0.0019 97.40 735.66 0.0169 99.00 1576 0.0362 100.60 2134 0.0490 95.90 108.16 0.0025 97.50 787.47 0.0181 99.10 1624 0.0373 100.70 2145 0.0492 96.00 139.78 0.0032 97.60 839.82 0.0193 99.20 1672 0.0384 100.80 2153 0.0494 96.10 176.16 0.0040 97.70 892.83 0.0205 99.30 1718 0.0394 100.90 2157 0.0495 96.20 204.46 0.0047 97.80 946.11 0.0217 99.40 1763 0.0405 101.00 2159 0.0496 ' 96.30 237.62 0.0055 97.90 999.51 0.0229 99.50 1806 0.0415 101.10 2160 0.0496 96.40 273.99 0.0063 98.00 1053 0.0242 99.60 1847 0.0424 96.50 312.96 0.0072 98.10 1107 0.0254 99.70 1886 0.0433 10/29/96 Lovell-Sauerland & Associates Inc page 7 STAGE DISCHARGE TABLE COMBINATION DISCHARGE ID No. CTRLK Description: KAIREZ DRIVE CONTROL STRUCTURE Structure: OK Structure: RK Structure: STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > (ft) --- cfS--------- (ft) --- cfS--------- (ft) --- cfS--------- (ft) --- cfS--------- 146.00 0.0000 148.30 0.1067 150.60 ----------------- 0.1509 152.90 0.4750 146.10 0.0222 148.40 0.1090 150.70 0.1525 153.00 0.4835 146.20 0.0315 148.50 0.1112 150.80 0.1541 153.10 0.4918 146.30 0.0385 148.60 0.1134 150.90 0.1557 153.20 0.5000 146.40 0.0445 148.70 0.1156 151.00 0.2222 153.30 0.5080 146.50 0.0497 148.80 0.1177 151.10 0.2506 153.40 0.5158 146.60 0.0545 148.90 0.1198 151.20 0.2728 153.50 0.5236 146.70 0.0589 149.00 0.1218 151.30 0.2917 153.60 0.5311 146.80 0.0629 149.10 0.1238 151.40 0.3086 153.70 0.5386 146.90 0.0667 149.20 0.1258 151.50 0.3239 153.80 0.5459 147.00 0.0703 149.30 0.1278 151.60 0.3382 153.90 0.5532 147.10 0.0738 149.40 0.1297 151.70 0.3515 154.00 0.5603 147.20 0.0771 149.50 0.1316 151.80 0.3641 154.10 0.8753 147.30 0.0802 149.60 0.1335 151.90 0.3761 154.20 1.4453 147.40 0.0832 149.70 0.1353 152.00 0.3875 154.30 2.1813 147.50 0.0862 149.80 0.1371 152.10 0.3985 154.40 2.9798 147.60 0.0890 149.90 0.1389 152.20 0.4091 154.50 3.2687 147.70 0.0917 150.00 0.1407 152.30 0.4194 154.60 3.5306 147.80 0.0944 150.10 0.1424 152.40 0.4293 154.70 3.7718 147.90 0.0970 150.20 0.1442 152.50 0.4389 154.80 3.9967 148.00 0.0995 150.30 0.1459 152.60 0.4483 154.90 4.2082 148.10 0.1019 150.40 0.1476 152.70 0.4574 155.00 4.4086 148.20 0.1043 150.50 0.1492 152.80 0.4663 1 I Lovell-Sauerland and Associates October 29, 1996 Page 10 1 10/29/96 Lovell-Sauerland & Associates Inc page 8 .. STAGE DISCHARGE TABLE COMBINATION DISCHARGE ID No. CTRLN Description: NICHOLAS LANE CONTROL STRUCT Structure: ON Structure: Structure: RN Structure: STAGE (ft) --cfs-- - STAGE (ft) --cfs-- - STAGE (ft) --cfs-- - STAGE --<--DISCHARGE---> (ft) --cfs-- - --<--DISCHARGE--->--- 95.00 0.0000 --<--DISCHARGE--->--- 96.60 0.1373 --<--DISCHARGE--->--- 98.20 0.1942 99.80 0.9162 95.10 0.0343 96.70 0.1415 98.30 0.1972 99.90 0.9518 95.20 0.0485 96.80 0.1456 98.40 0.2002 100.00 0.9859 ' 95.30 0.0595 96.90 0.1496 98.50 0.2031 100.10 1.0187 95.40 0.0687 97.00 0.1535 98.60 0.2060 100.20 1.0503 95.50 0.0768 97.10 0.1573 98.70 0.2088 100.30 1.0808 95.60 0.0841 97.20 0.1610 98.80 0.2116 100.40 1.1104 95.70 0.0908 97.30 0.1646 98.90 0.4289 100.50 1.1391 95.80 0.0971 97.40 0.1682 99.00 0.5205 100.60 1.4750 95.90 0.1030 97.50 0.1716 99.10 0.5914 100.70 2.0654 96.00 0.1085 97.60 0.1750 99.20 0.6515 100.80 2.8211 96.10 0.1138 97.70 0.1784 99.30 0.7048 100.90 3.7106 96.20 0.1189 97.80 0.1816 99.40 0.7532 101.00 3.9464 ' 96.30 0.1238 97.90 0.1849 99.50 0.7979 96.40 0.1284 98.00 0.1880 99.60 0.8396 96.50 0.1329 98.10 0.1911 99.70 0.8789 10/29/96 Lovell-Sauerland & Associates Inc page 9 STAGE DISCHARGE TABLE MULTIPLE ORIFICE ID No. OK Description: ORIFICE FOR KAIREZ DRIVE Outlet Elev: 146.00 Elev: 146.00 ft Orifice Diameter: 1.6100 in. Elev: 150.90 ft Orifice 2 Diameter: 2.7500 in. STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > (ft) --- cfs--------- (ft) --- cfs--------- (ft) --- cfs--------- (ft) --- cfs--------- 146.00 0.0000 148.30 0.1067 150.60 0.1509 152.90 0.4750 146.10 0.0222 148.40 0.1090 150.70 0.1525 153.00 0.4835 146.20 0.0315 148.50 0.1112 150.80 0.1541 153.10 0.4918 146.30 0.0385 148.60 0.1134 150.90 0.1557 153.20 0.5000 146.40 0.0445 148.70 0.1156 151.00 0.2222 153.30 0.5080 146.50 0.0497 148.80 0.1177 151.10 0.2506 153.40 0.5158 146.60 0.0545 148.90 0.1198 151.20 0.2728 153.50 0.5236 146.70 0.0589 149.00 0.1218 151.30 0.2917 153.60 0.5311 146.80 0.0629 149.10 0.1238 151.40 0.3086 153.70 0.5386 146.90 0.0667 149.20 0.1258 151.50 0.3239 153.80 0.5459 147.00 0.0703 149.30 0.1278 151.60 0.3382 153.90 0.5532 147.10 0.0738 149.40 0.1297 151.70 0.3515 154.00 0.5603 147.20 0.0771 149.50 0.1316 151.80 0.3641 154.10 0.5673 147.30 0.0802 149.60 0.1335 151.90 0.3761 154.20 0.5742 147.40 0.0832 149.70 0.1353 152.00 0.3875 154.30 0.5811 147.50 0.0862 149.80 0.1371 152.10 0.3985 154.40 0.5878 147.60 0.0890 149.90 0.1389 152.20 0.4091 154.50 0.5945 147.70 0.0917 150.00 0.1407 152.30 0.4194 154.60 0.6010 147.80 0.0944 150.10 0.1424 152.40 0.4293 154.70 0.6075 147.90 0.0970 150.20 0.1442 152.50 0.4389 154.80 0.6140 148.00 0.0995 150.30 0.1459 152.60 0.4483 154.90 0.6203 148.10 0.1019 150.40 0.1476 152.70 0.4574 155.00 0.6266 148.20 0.1043 150.50 0.1492 152.80 0.4663 1 Lovell-Sauedand and Associates October 29, 1996 Page 11 u L I 10/29/96 Lovell-Sauerland & Associates Inc page 10 STAGE DISCHARGE TABLE MULTIPLE ORIFICE ID No. ON Description: ORIFICE IN NICHOLAS LANE Outlet Elev: 95.00 Elev: 95.00 ft Orifice Diameter: 2.0000 in. Elev: 98.80 ft Orifice 2 Diameter: 5.0000 in. STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > (ft) --- CfS--------- ------------------- (ft) --- cfs--------- (ft) --- cfs-- (ft) --- CfS--------- --------- ----- 95.00 0.0000 96.60 ----------------------------------------------- 0.1373 98.20 0.1942 99.80 0.9162 95.10 0.0343 96.70 0.1415 98.30 0.1972 99.90 0.9518 95.20 0.0485 96.80 0.1456 98.40 0.2002 100.00 0.9859 ' 95.30 0.0595 96.90 0.1496 98.50 0.2031 100.10 1.0187 95.40 0.0687 97.00 0.1535 98.60 0.2060 100.20 1.0503 95.50 0.0768 97.10 0.1573 98.70 0.2088 100.30 1.0808 95.60 0.0841 97.20 0.1610 98.80 0.2116 100.40 1.1104 95.70 0.0908 97.30 0.1646 98.90 0.4289 100.50 1.1391 95.80 0.0971 97.40 0.1682 99.00 0.5205 100.60 1.1671 95.90 0.1030 97.50 0.1716 99.10 0.5914 100.70 1.1943 96.00 0.1085 97.60 0.1750 99.20 0.6515 100.80 1.2209 96.10 0.1138 97.70 0.1784 99.30 0.7048 100.90 1.2468 96.20 0.1189 97.80 0.1816 99.40 0.7532 101.00 1.2722 96.30 0.1238 97.90 0.1849 99.50 0.7979 96.40 0.1284 98.00 0.1880 99.60 0.8396 96.50 0.1329 98.10 0.1911 99.70 0.8789 10/29/96---------Lovell_Sauerland-& Associates Inc page 11 STAGE DISCHARGE TABLE RISER DISCHARGE ID No. RK Description: RISER IN KAIREZ DRIVE Riser Diameter (in): 12.00 elev: 154.00 ft Weir Coefficient...: 3.782 height: 155.00 ft Orif Coefficient...: 9.739 increm: 0.10 ft STAGE <--DISCHARGE---> STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > -(ft)-----cfs--------------(ft)-----cfs-- ------- (ft) --- cfs--------- (ft) --- cfs--------- ---------------------------------------- 154.00 0.0000 154.20 0.8711 154.50 --- 2.6743 154.80 3.3827 ' 154.00 0.0000 154.10 0.3080 154.30 154.40 1.6003 2.3919 154.60 154.70 2.9295 3.1642 154.90 155.00 3.5879 3.7820 10/29/96 Lovell-Sauerland & Associates Inc page 12 STAGE DISCHARGE TABLE RISER DISCHARGE ID No. RN ' Description: RISER IN Riser Diameter (in): KAIREZ 12.00 DRIVE elev: 100.50 ft Weir Coefficient...: 3.782 height: 101.00 ft Orif Coefficient...: 9.739 increm: 0.10 ft STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > (ft) --- cfs--------- (ft) --- cfs--------- (ft) --- cfs--------- (ft) --- cfs--------- 100.50 0.0000 100.60 0.3080 100.80 1.6003 101.00 2.6743 100.50 0.0000 100.70 0.8711 100.90 2.4638 101.00 2.6743 Lovell-Sauerland and Associates October 29, 1996 Page 12 10/29/96 Lovell-Sauerland & Associates Inc page 13 LEVEL POOL TABLE SUMMARY MATCH INFLOW -STO- -DIS- <-PEAK-> STORAGE <-------- DESCRIPTION --------- > (cfs) (cfs) --id- --id- <-STAGE> id VOL (cf) 10-YEAR KAIREZ ............... 0.40 0.72 PIPEK CTRLK 151.07 1 3057.33 100-YEAR KAIREZ .............. 0.92 1.23 PIPEK CTRLK 153.89 11 4785.45 10-YR NICHOLAS ............... 0.40 0.52 PIPEN CTRLN 98.87 2 1508.76 100-YR NICHOLAS .............. 0.92 0.89 PIPEN CTRLN 99.54 12 1823.33 1 1 1 n I Lovell-Sauerland and Associates October 29, 1996 Page 13 VISTA DEL MAR, LSA 2926 23-Aug-96 SCS Weighted average curve number calculations 08:54 AM SCS Hydrologic Soils type: --- > C C EXISTING BASIN Basin area, sf: -174,000 - -----------n/a----- 0 ---n/a --TOTAL 0 174.000 Basin area acres: 3.99 0.00 0.00 3.99 Existing conditions (in square feet) Assumptions: CN: CN: Undisturbed forest land 76 76 0 0 0 Second growth forest 81 87,000 81 87,000 Meadow or pasture 85 72,000 85 72.000 Grass, > 75% coverage 86 86 Dirt road/parking lot 87 87 Gravel road/parking lot 89 89 Grass, > 50% coverage 90 90 Orchard with crop cover 92 92 Cultivated land 94 94 Impervious 98 15,000 98 15,000 Existing onsite impervious = 13,900 Open water 100 100 Total Weighted CN for each basin: 84.1 76.0 76.0 84.1 Pervious: Area, acres: 3.65 0.00 0.00 3.65 Weighted CN: 82.8 76.0 76.0 82.8 Impervious: Area, acres: 0.34 0.34 Percent impervious area: 8.6% 8.6% Detention 1 Detention 2 bypass TOTAL Future conditions Total AC: -_- 2.71 1.02 0.27 3.99 Total sf: 118.000 44,250 11,750 174,000 Assumptions: CN: CN: Undisturbed forest land 76 76 Second growth forest (@ 10% of grass) 81 4,818 81 0 0 4,818 Meadow or pasture 85 85 Grass, > 75% coverage 86 48,182 86 0 0 48,182 Dirt road/parking lots 87 87 Gravel road/parking lot 89 89 Grass, > 50% coverage 90 90 Orchard with crop cover 92 92 Cultivated land 94 94 Impervious 98 65,000 98 44,250 11,750 121,000 Other impervious 5,000 8,000 1,750 14,750 LF of road/sidewalk, plat road: 500 500 Avg. Width of road/sidewalk 30 ft LF of road/sidewalk, frontage: 200 250 450 Avg. Width of road/sidewalk 25 ft No. of houses/lots 8 6 2 16 House/lot impervious 5,000 sf/lot 5,000 5,000 5,000 Open water 100 100 Total Weighted CN for each basin: 92.4 98.0 98.0 94.2 Pervious: Area, acres: 1.22 0.00 0.00 1.22 Weighted CN: 85.5 85.5 85.5 85.5 Impervious: Area, acres: 1.49 1.02 0.27 2.78 Percent impervious area: 55.1% 100.0% 100.0% 69.5% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DRAINAGE CALCULATIONS 29-Oct-96 DETENTION PIPE FOR KAIREZ PLACE --_-------------------------- 12:35 PM DETENTION PIPE SIZE Estimate of required detention storage volume = 6000 cf Assume a det. pipearch 117.0 x 79.0 (width and height) Cross section area = 52.0 sf Usable vol. of Type I CB 6.0 sf/ft = cf Usable vol. of 2.0 Type 11 MH 54.0 inch dia = 209.4 cf Usable vol. of Type II MH 72.0 inch dia = cf Usable vol. of 18.0 inch pipe: ft long = cf Usable vol. of 36.0 inch pipe: 4.0 ft long = 28.3 cf Required pipe volume = 5762.3 cubic feet Required pipe length = 110.8 linear feet Length of pipe used = 111.0 FT. Storage provided = 6009.7 cubic feet Minimum grade elevations: Top D/S detention CB 156.07 with 2.50 ft Overflow clearance Top D/S detention CB 154.96 with 2.0 ft cover Top U/S detention CB 155.57 with 2.0 ft cover Min Grnd surf. elev = 154.07 (over any inlet: 0.5 ft above OFF Inv elev at U/S end = 146.94 Max water surface elev = 153.57 (detn. pipe sI. = 0.50% ) Invert elevation = 146.38 CALCULATION OF OUTLET SIZE -------------------------- -------------------------- Required release rate, orifice 1 = 0.320 Required release rate, orifice 2 = 0.380 Required release rate, orifice 3 = Storage At elevation: H, ft a, sf d,ft d,inches provd. 146.38 6.63 0.025 0.18 2- 3/16 0 149.50 3.51 0.041 0.23 2- 3/4 2966 -0 Full storage = 6010 ---- ------- ---- ----- ---- ----- ---- -------------- --- - area, a=Qdo/(.62x(2xgxh)"".5) g-32.2 orifice diameter, d = (4/pi x a)'".5 08 U VI N W 0.6 L L N I m cu a� W i C 0.4 N N 100• v c 10-YEAR TARGE m 0.2 rn m 0A 0 2 4 Thousands Detention Volume, cubic feet e a 1 Max water surface elev = 153.01 (detn. pipe sl. = 1 1-----round pipe ----I I-cmpa-I Total Total Water Surf Depth wetted Hyd wetted Wetted Pipe Struc. Or. 1 Or. 2 Or. 3 Vol 0 Elev. feet width R Area Area Vol. Vol. rel. rel. rel. _=___________° 0.000 0.000 146.380 146.506 0.126 1.80 0.56 0.15 0.364 40 4.6 0.044 45 0.044 146.632 0.252 2.53 0.79 0.43 1.092 121 9.1 0.062 130 0.062 146.758 0.378 3.06 0.97 0.78 1.820 202 13.7 0.076 216 0.076 146.884 0.504 3.50 1.12 1.20 2.548 283 18.2 0.088 301 0.088 147.011 0.631 3.87 1.26 1.66 3.276 364 22.8 0.099 386 0.099 147.137 0.757 420 1.38 2.17 4.134 459 27.3 0.108 486 0.108 147.263 0.883 4.49 1.50 2.72 5.122 569 31.9 0.117 600 0.117 147.389 1.009 4.74 1.61 3.30 6.110 678 36.4 0.125 715 0.125 147.515 1.135 4.97 1.71 3.92 7.098 788 41.0 0.132 829 0.132 147.641 1261 5.18 1.81 4.56 8.086 898 45.5 0.140 943 0.140 147.767 1.387 5.37 1.91 5.22 9.230 1025 50.1 0.146 1075 0.146 147.893 1.513 5.54 2.00 5.91 9.880 1097 54.6 0.153 1151 0.153 148.019 1.639 5.69 2.09 6.62 11.180 1241 59.2 0.159 1300 0.159 148.146 1.766 5.83 2.18 7.35 12.480 1385 63.7 0.165 1449 0.165 148.272 1.892 5.96 2.26 8.09 13.780 1530 68.3 0.171 1598 0.171 148.398 2018 6.07 2.35 8.85 15.080 1674 72.8 0.176 1747 0.176 148.524 2.144 6.17 2.43 9.62 16.484 1830 77.4 0.182 1907 0.182 148.650 2.270 6.26 2.51 10.40 17.888 1986 82.0 0.187 2068 0.187 148.776 2.396 6.33 2.59 11.20 19.292 2141 86.5 0.192 2228 0.192 148.902 2.522 6.40 2.67 12.00 20.696 2297 91.1 0.197 2388 0.197 149.028 2.648 6.46 2.75 12.81 22.100 2453 95.6 0.202 2549 0.202 149.154 2.774 6.50 2.83 13.63 23.556 2615 100.2 0.207 2715 0.207 149.281 2.901 6.54 2.90 14.45 25.012 2776 104.7 0.212 2881 0.212 149.407 3.027 6.56 2.98 15.28 25.740 2857 109.3 0.216 2966 0.216 149.533 3.153 6.58 3.06 16.11 27.196 3019 113.8 0.221 0.04 3133 0.257 149.659 3.279 6.58 3.13 16.94 28.652 3180 118.4 0.225 0.08 3299 0.306 149.785 3.405 6.58 3.21 17.77 30.030 3333 122.9 0.229 0.11 3456 0.337 149.911 3.531 6.57 3.29 18.59 31.330 3478 127.5 0.233 0.13 3605 0.363 150.037 3.657 6.54 3.36 19.42 32.630 3622 132.0 0.238 0.15 3754 0.386 150.163 3.783 6.51 3.44 20.24 33.930 3766 136.6 0.242 0.17 3903 0.407 150.289 3.909 6.47 3.52 21.06 35.230 3911 141.1 0.246 0.18 4052 0.426 150.416 4.036 6.41 3.60 21.87 36.426 4043 145.7 0.250 0.19 4189 0.444 150.542 4.162 6.35 3.68 22.68 37.518 4164 150.3 0.253 0.21 4315 0.460 150.668 4.288 6.27 3.76 23.48 38.610 4286 154.8 0.257 0.22 4441 0.476 150.794 4.414 6.19 3.84 24.26 39.702 4407 159.4 0.261 0.23 4566 0.492 150.920 4.540 6.09 3.92 25.04 40.248 4468 163.9 0.265 0.24 4631 0.506 151.046 4.666 5.98 4.00 25.60 41.340 4589 168.5 0.268 0.25 4757 0.520 151.172 4.792 5.86 4.09 26.54 42.224 4687 173.0 0.272 0.26 4860 0.534 151.298 4.918 5.72 4.18 27.28 43.108 4785 177.6 0.276 0.27 4963 0.547 151.424 5.044 5.57 4.26 27.99 43.992 4883 102.1 0.279 0.28 5065 0.560 151.551 5.171 5.41 4.36 28.68 44.876 4981 186.7 0.283 0.29 5168 0.573 151.677 5.297 5.22 4.45 29.35 45.760 5079 191.2 0.286 0.30 5271 0.585 151.803 5.423 5.02 4.55 30.00 46.436 5154 195.8 0.289 0.31 5350 0.597 151.929 5.549 4.79 4.65 30.61 47.112 5229 200.3 0.293 0.32 5430 0.609 152.055 5.675 4.54 4.76 31.20 47.788 5304 204.9 0.296 0.32 5509 0.620 152.181 5.801 4.26 4.88 31.76 48.464 5380 209.4 0.299 0.33 5589 0.631 152.307 5.927 3.94 5.00 32.28 49.140 5455 214.0 0.302 0.34 5669 0.642 152.433 6.053 3.58 5.13 32.75 49.426 5486 218.5 0.306 0.35 5705 0.653 152.559 6.179 3.16 5.28 33.18 49.998 5550 223.1 0.309 0.35 5773 0.663 152.686 6.306 2.65 5.46 33.54 50.570 5613 227.7 0.312 0.36 5841 0.674 152.812 6.432 1.98 5.67 33.84 51.142 5677 232.2 0.315 0.37 5909 0.684 152.938 6.558 0.82 6.03 34.03 51.714 5740 236.8 0.318 0.38 5977 0.694 153.064 6.583 6.28 34.04 52.000 5772 237.7 0.321 0.38 6010 0.704 153.190 6.583 6.28 34.04 52.000 5772 237.7 0.324 0.39 6010 0.714 153.659 6.583 6.28 34.04 52.000 5772 237.7 0.335 0.41 6010 0.749 153.786 6.583 6.28 34.04 52.000 5772 237.7 0.338 0.42 6010 0.758 153.568 6.583 NA 34.04 52.000 5772 237.7 0.333 0.41 6010 0.742 3057 0.240 10-YEAR TARGET 4785 0.550 100-YEAR TARGE 1 1 DRAINAGE CALCULATIONS 14-Nov-96 DETENTION PIPE FOR NICHOLAS LANE 11:05 AM DETENTION PIPE SIZE " Estimate of required detention storage volume = 2350 cf Assume a det. pipe 84.0 inches, diameter Cross section area = 38.5 sf Usable vol. of Type I CB 6.0 sf/ft = cf Usable vol. of 2.0 Type II MH 54.0 inch dia = 222.7 cf Usable vol. of Type II MH 72.0 inch dia = cf Usable vol. of 18.0 inch pipe: ft long = cf Usable vol. of 36.0 inch pipe: 4.0 ft long = 28.3 of Required pipe volume = 2099.1 cubic feet Required pipe length = 54.5 linear feet Length of pipe used = 55.0 FT. Storage provided = 2367.6 cubic feet Minimum grade elevations: Top D/S detention CB 104.83 with 2.50 ft Overflow clearance Top D/S detention CB 104.00 with 2.0 ft cover Top U/S detention CB 104.33 with 2.0 ft cover Min Grnd surf. elev = 102.83 (over any inlet: 0.5 ft above OF Inv elev at U/S end = 95.28 Max water surface elev = 102.33 (detn. pipe si. = 0.50% ) Invert elevation = 95.00 CALCULATION OF OUTLET SIZE Required release rate, orifice 1 = 0.450 Required release rate, orifice 2 = 0.850 Required release rate, orifice 3 = Storage At elevation: H, ft a, sf d,ft d,inches provd. -____--- ------------ ----- 7.05--- ---- ---------- ---------- 2- 1/2 0.0340 0 99.40 2.65 0.105 0.37 4 - 7/16 1546 0 Full storage = 2368 ------------------------------------------- area, a = Qdo / (.62 x (2 x g x h)'".5) g = 32.2 orifice diameter, d = ( 4/pi x a)'".5 1.5 46 U N N r-� f0 N 1i (6 0) 100-YEAR TARGET a 0.5 i C I 0 10-YEAR TA ET &; o o soo 1000 15W 2000 2500 Detention Volume, cubic feet ' ' Max water surface elev = I Water Surf Depth Elev. - - - -- feet- pipe 102.05 (detn. p p ------ round pipe ----I wetted Hyd - -- width- -- R-- wetted -- Area ) 1-cmpa-I Wetted Pipe Struc. Or. 1 Or. 2 Or. 3 Area -- Vol.- -Vol. -- rel.- - rel.--- rel. Total Total Vol =-0.000 0.000 ' ' ' ' ' 95.000 95.129 95.257 95.386 95.514 95.643 95.771 95.900 96.028 96.157 96.285 96.414 96.542 96.671 96.799 96.928 97.056 97.185 97.313 97.442 97.570 97.699 97.827 97.956 98.084 98.213 98.341 98.470 98.598 98.727 98.855 98.984 99.112 99.241 99.369 99.498 99.626 99.755 99.883 100.012 100.140 100.269 100.397 100.526 100.654 100.783 100.911 101.040 101.168 101.297 101.425 101.554 101.682 101.811 101.939 102.068 102.131 102.325 0.129 0.257 0.386 0.514 0.643 0.771 0.900 1.028 1.157 1.285 1.414 1.542 1.671 1.799 1.928 2.056 2.185 2.313 2.442 2.570 2.699 2.827 2.956 3.084 3.213 3.341 3.470 3.598 3.727 3.855 3.984 4.112 4.241 4.369 4.498 4.626 4.755 4.883 5.012 5.140 5.269 5.397 5.526 5.654 5.783 5.911 6.040 6.168 6.297 6.425 6.554 6.682 6.811 6.939 7.000 7.000 7.000 1.88 2.63 3.19 3.65 4.04 4.38 4.69 4.96 5.20 5.42 5.62 5.80 5.97 6.12 6.25 6.38 6.49 6.59 6.67 6.75 6.81 6.87 6.91 6.95 6.98 6.99 7.00 7.00 6.99 6.96 6.93 6.89 6.84 6.78 6.71 6.63 6.53 6.43 6.31 6.18 6.04 5.88 5.71 5.52 5.31 5.07 4.82 4.53 4.21 3.84 3.42 2.91 2.27 1.30 0.54 0.77 0.95 1.10 1.23 1.35 1.47 1.57 1.67 1.77 1.86 1.95 2.04 2.13 2.21 2.29 2.37 2.45 2.53 2.60 2.68 2.75 2.83 2.90 2.98 3.05 3.12 3.20 3.27 3.34 3.42 3.49 3.57 3.64 3.72 3.80 3.87 3.95 4.03 4.12 4.20 4.29 4.38 4.47 4.56 4.66 4.77 4.88 4.99 5.12 5.26 5.42 5.62 5.91 6.28 6.28 NA 0.16 0.45 0.83 1.27 1.77 2.31 2.89 3.51 4.16 4.85 5.56 6.29 7.05 7.82 8.62 9.43 10.26 11.10 11.95 12.81 13.68 14.56 15.45 16.34 17.23 18.13 19.03 19.93 20.83 21.72 22.62 23.51 24.39 25.26 26.13 26.99 27.83 28.67 29.49 30.29 31.07 31.84 32.59 33.31 34.00 34.67 35.31 35.91 36.47 36.99 37.45 37.86 38.20 38.43 38.48 38.48 38.48 0.269 0.808 1.347 1.886 2.425 3.060 3.425 4.156 4.888 5.619 6.350 7.312 7.793 8.755 9.717 10.679 11.680 12.719 13.239 14.278 15.317 16.356 17.433 18.511 19.050 20.127 21.205 22.225 23.187 24.149 24.630 25.592 26.554 27.362 28.171 28.979 29.383 30.191 30.922 31.577 32.231 32.885 33.212 33.866 34.367 34.867 35.367 35.868 36.118 36.580 37.003 37.426 37.850 38.273 38.485 38.485 38.485 9 25 46 70 97 127 159 193 229 267 306 346 388 430 474 519 564 610 657 705 753 801 850 899 948 997 1047 1096 1146 1195 1244 1293 1341 1390 1437 1484 1531 1577 1622 1666 1709 1751 1792 1832 1870 1907 1942 1975 2006 2034 2060 2082 2101 2114 2117 2117 2117 4.6 9.2 13.8 18.4 23.0 27.6 322 36.9 41.5 46.1 50.7 55.3 59.9 64.5 69.1 73.7 78.3 82.9 87.5 92.1 96.7 101.3 106.0 110.6 115.2 119.8 124.4 129.0 133.6 138.2 142.8 147.4 152.0 156.6 161.2 165.8 170.5 175.1 179.7 184.3 188.9 193.5 198.1 202.7 207.3 211.9 216.5 221.1 225.7 230.3 234.9 239.6 244.2 248.8 250.9 250.9 250.9 0.061 0.086 0.105 0.122 0.136 0.149 0.161 0.172 0.182 0.192 0.202 0210 0.219 0.227 0.235 0.243 0.251 0.258 0.265 0.272 0.278 0.285 0.291 0.298 0.304 0.310 0.316 0.321 0.327 0.333 0.338 0.344 0.349 0.354 0.359 0.365 0.370 0.375 0.379 0.384 0.389 0.394 0.398 0.403 0.408 0.412 0.417 0.421 0.425 0.430 0.434 0.438 0.442 0.446 0.451 0.453 0.459 0.16 0.25 0.31 0.36 0.41 0.45 0.49 0.52 0.55 0.58 0.61 0.64 0.67 0.69 0.72 0.74 0.77 0.79 0.81 0.83 0.85 0.86 0.89 13 34 59 88 120 155 191 230 270 313 356 401 495 543 592 642 693 745 797 849 902 956 1009 1063 1117 1171 1225 1279 1333 1387 1440 1493 1546 1598 1650 1701 1752 1801 1850 1898 1945 1990 2035 2077 2119 2158 2196 2232 2265 2295 2322 2345 2363 2368 2368 2368 0.061 0.086 0.105 0.122 0.136 0.149 0.161 0.172 0.182 0.192 0.202 0.0.210 19 0.227 0.235 0.243 0.251 0.258 0.265 0.272 0.278 0.285 0.291 0.298 0.304 0.310 0.316 0.321 0.327 0.333 0.338 0.344 0.349 0.354 0.523 0.613 0.681 0.738 0.834 0.34 0.876 0.915 0.952 0.988 1.022 1.054 1.085 1.115 1.144 1.173 1.200 1227 1.253 1.279 1.303 1.315 1.352 1508 ' 1823 1 0.350 10-YEAR 0.820 100-YEA APPENDIX A -- BASIN STUDY ' To establish the capacity needs of the upstream system, a basin study was conducted. This included field collection of land use data and drainage system location, and modeling of the basin to determine likely peak rates of flow. The results of this are presented below in the ' section titled "Drainage Basin Study." In order to establish the true capacity of the system, it was necessary to collect field survey data for the tops and inverts of the actual pipe system at the junction points below the project. The following table and the attached topography portion shows the survey data for the system. 1 Downstream System Data Node Identifier: OF 1 2 3 4 Top elev. 22 22.29 62.54 90.8 1 17assumed Invert elev. 14.22 16.29 35.17 83.24 105(assumed) Pipe length 45 80 140 168 Pi a diameter 241 24 24 24 Pipe sloe 4.60%1 23.60% 34.34% 12.95% TRIBUTARY DRAINAGE BASIN STUDY The basin draining through the subject pipe system is about 155 acres, based on a field investigation by C, Campbell on November 14, 1995. With only a few exceptions, the basin is bounded by 84th Ave W. to the east, 192nd Street SW to the south, 88th Avenue W. to the west and Olympic View drive to the north. The basin is, or will be, all single family housing at an approximate average density of 2 homes per acre. The only identified area with greater impervious cover is the elementary school at 86th Street and 188th Ave. For the purpose of this study, it was assumed that larger lots were developed at a density comparable to the surrounding developments Pervious areas within the basin are either lawns with mature landscape trees, or in a few cases, wooded areas on relatively steep terrain. The runoff character was assumed to be lawn with approximately 15 percent tree and shrub cover equivalent to second growth forest. The drainage collection system was simplified to two main stems, one on 88th Avenue W. and one on Olympic View Drive. Each of these had a number of laterals from sub -basin areas. Except where more detailed information was available from plans, pipe slopes were based on the surface elevations indicated on 1"=200' aerial mapping. Pipe inverts were assumed to be 3 feet below the surface. Lovell-Sauerland and Associates Appendix A Page A-1 ' The basin was divided into subbasin areas ranging from 3 to 13 acres in size. Detention systems were assumed in the more recently developed areas, based on 1000 cf of storage ' per acre, and having a release rate based on forest using the rational method. A table showing these assumptions is attached, titled "Basin Runoff Estimation Assumptions." Also attached is the SCS Soils survey map for the area, and a map-worksheet showing the locations of each of the sub -basins. This information was all incorporated into a computer model using "Hydra" software. The model utilizes the SCS-SBUH method, and was used for the 24-hour, 100-year and 25-year storms. If the upstream basin produces a higher rate of runoff than can be carried by the downstream system, then detention will be provided as required by city code. The input and results of this modeling follow: HYDRA OUTPUT Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington Page 1 C:\4\2926SCS.CMD 10:26 8-Apr-96 CFS Vista Del Mar Basin Analysis *** point Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 1 10 0.1000 342.00 0.0 2.8 2.77 12.11 345.00 344.00 dummy pipe 12 341.00 0.0 0.0 3.53 22.91 460.07 459.73 0.37-115.07-115.73 ---------------------------------------------------- Lateral length= 10 Upstream length= 10 ------------------------------------=--------------- Lateral length= 0 Upstream length= 0 *** point Reservoir Invert -------------- Maximum Flow Values ----------------- Cost ' Link Up/Dn/Ovr San Inf Sto Mis Design Exfil 3 341.00 Incoming 0.00 0.00 2.77 0.00 2.77 0 340.00 Discharge 0.00 0.00 2.64 0.00 2.64 353.00 Overflow 0.00 0.00 0.00 0.00 0.00 Stored 0 0 2511 0 2511 0 ' *** point Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt ' Diam Up/Dn Inf Mis Vel d/D %Cap QRem HGLUp DiffUp HGLDn DiffDn Parallel Replace i �' Lovell-Sauerland and Associates Appendix A Page A-2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 150 0.0867 340.00 0.0 2.6 2.64 11.27 343.00 330.00 DUMMY PIPE 12 327.00 0.0 0.0 3.36 23.43 459.73 458.76 0.37-116.73-128.76 ---------------------------------------------------- Lateral length= 160 Upstream length= 160 ---------------------------------------------------- Lateral length= 0 Upstream length= 0 *** TER MAR Reservoir Invert -------------- Maximum Flow Values.----------------- Cost Link Up/Dn/Ovr San Inf Sto Mis Design Exfil 6 341.00 Incoming 0.00 0.00 2.77 0.00 2.77 0 340.00 Discharge 0.00 0.00 2.77 0.00 2.77 Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington Page 2 C:\4\2926SCS.CMD 10:26 8-Apr-96 CFS Vista Del Mar Basin Analysis 353.00 Overflow 0.00 0.00 0.00 0.00 0.00 Stored 0 0 3024 0 3024 0 *** TER MAR Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 7 150 0.0867 340.00 0.0 2.8 2.77 11.27 343.00 330.00 DUMMY PIPE 12 327.00 0.0 0.0 3.53 24.59 459.82 458.76 0.38-116.82-128.76 ---------------------------------------------------- Lateral length= 150 Upstream length= 150 *** North 84th Ave W. Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 8 400 0.0875 382.00 0.0 1.7 1.70 11.33 385.00 350.00 PIPE 1 12 347.00 0.0 0.0 2.16 14.98 459.64 458.76 0.29 -74.64-108.76 *** North 84th Ave W. Channel Shape Invert Surf FreBrd Width San Sto Flow Estimated Link Long L/C/R Up/Dn Up/Dn Up/Dn Depth Inf Mis Vel Cost 9 800 3.000 347.00 347.35 2.6 4.11 0.00 3.37 3.37 0 Lovell-Saue►iand and Associates Appendix A Page A-3 Swale to bas 2.00 327.00 327.35 2.6 0.35 0.00 0.00 3.15 3.000 Slope = 0.0250 Froude Number = 1.09 ' Pipes *** North 84th Ave W. Analysis of Existing Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt ' Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 10 600 0.1333 327.00 0.0 7.0 7.02 13.98 330.00 250.00 ' PIPE 2 12 247.00 0.0 0.0 8.94 50.21 458.76 437.21 0.56 -128.76 -187.21 ---------------------------------------------------- Lateral length= 1800 Upstream length= 2110 Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington Page 3 ------------------------------- C:\4\2926SCS.CMD 10:26 8-Apr-96 CFS ' Vista Del Mar Basin Analysis *** Seaview Heights Basin Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel ' d/D QRem DiffUp DiffDn Replace 11 200 0.0600 377.00 0.0 6.8 6.79 9.38 380.00 368.00 PIPE 3 12 365.00 0.0 0.0 8.64 72.33 775.58 767.69 ' 0.71 -395.58 -399.69 12 450 0.0333 365.00 0.0 8.3 8.31 6.99 368.00 356.00 PIPE 4 12 350.00 0.0 0.0 10.58 118.85 767.69 745.48 8 ' 0.90 1.32-399.69 -389.48 15 ---------------------------------------------------- Lateral length= 650 Upstream length= 650 *** Helleren Lane 1 Analysis of Existing Pipes ' Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace ' 13 450 0.0756 394.00 0.0 4.1 4.05 10.53 397.00 375.00 PIPE 5A 12 360.00 0.0 0.0 5.16 38.51 698.87 693.31 0.49 -301.87 -318.31 --------------------------------------------------- Lateral length= 450 Upstream length= 450 ---------------------------------------------------- Lateral length= 0 Upstream length= 0 Lovell-Sauerland and Associates Appendix A Page A-4 Reservoir *** Helleren Lane 2 Invert -------------- Maximum Flow Values ----------------- Cost Link Up/Dn/Ovr San Inf Sto Mis Design Exfil 15 370.00 Incoming 0.00 0.00 3.82 0.00 3.82 0 360.00 Discharge 0.00 0.00 3.27 0.00 3.27 370.00 Overflow 0.00 0.00 0.00 0.00 0.00 Stored 0 0 2565 0 2565 0 *** Helleren Lane 2 Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel . d/D QRem DiffUp DiffDn Replace Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington Page 4 ---------------------------------- C:\4\2926SCS.CMD 10:26 8-Apr-96 CFS Vista Del Mar Basin Analysis ' 16 PIPE 700 5 0.0214 12 360.00 345.00 0.0 0.0 7.3 0.0 7.32 9.32 5.61 130.56 375.00 693.31 350.00 666.45 ***/*** 8 0.90 1.71 -318.31 -316.45 15 ---------------------------------------------------- Lateral length= 700 Upstream length= 1150 *** Olympic View Drive Analysis of Existing Pipes ' Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace ' 17 350 0.0257 262.00 0.0 2.2 2.18 6.14 265.00 256.00 ***/*** PIPE 8 12 253.00 0.0 0.0 2.77 35.44 442.04 440.75 0.46 -177.04 -184.75 ***!*** 18 270 0.0259 253.00 0.0 4.1 4.10 6.17 256.00 249.00 PIPE 9 12 246.00 0.0 0.0 5.22 66.42 440.75 437.21 ' 0.67 -184.75 -188.21 19 370 0.0270 246.00 0.0 12.9 12.94 6.30 249.00 239.00 PIPE 10 12 236.00 0.0 0.0 16.47 205.46 437.21 389.79 15 ' 0.90 6.64 -188.21 -150.79 18 20 250 0.0240 236.00 0.0 14.9 14.92 5.93 239.00 233.00 ***/*** PIPE 11 12 230.00 0.0 0.0 18.99 251.42 389.79 348.43 15 ' 0.90 8.98 -150.79 -115.43 18 21 230 0.0261 230.00 0.0 16.7 16.68 6.19 233.00 227.00 ***/*** PIPE 12 12 224.00 0.0 0.0 21.24 269.68 348.43 300.77 15 ' --------------------------- -0_90 ---------------------- 10.50 -115.43 -73.77 18 ',I I Lovell-Sauerland and Associates Appendix A Page A-5 11 1 Lateral length= 1470 Upstream length= 3580 ---------------------------------------------------- Lateral length= 0 Upstream length= 0 *** HALO HAVEN Reservoir Invert -------------- Maximum Flow Values ----------------- Cost Link Up/Dn/Ovr San Inf Sto Mis Design Exfil 23 368.00 Incoming 0.00 0.00 3.54 0.00 3.54 0 367.00 Discharge 0.00 0.00 3.17 0.00 3.17 378.00 Overflow 0.00 0.00 0.00 0.00 0.00 Stored 0 0 4133 0 4133 0 Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington Page 5 __---- ------------------------------- C:\4\2926SCS.CMD 10:26 8-Apr-96 CFS Vista Del Mar Basin Analysis *** HALO HAVEN Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 24 150 0.0267 367.00 0.0 3.2 3.17 6.25 370.00 366.00 DUMMY PIPE 12 363.00 0.0 0.0 4.03 50.62 780.59 779.21 0.57-410.59-413.21 ----- Lateral length= 150 Upstream length=-----150 -------------------------------------------- Lateral length= 0 Upstream length= 0 *** SEAWOOD Reservoir Invert -------------- Maximum Flow Values ----------------- Cost Link Up/Dn/Ovr San Inf Sto Mis Design Exfil 26 344.00 Incoming 0.00 0.00 2.63 0.00 2.63 0 343.00 Discharge 0.00 0.00 2.63 0.00 2.63 354.00 Overflow 0.00 0.00 0.00 0.00 0.00 Stored 0 0 2632 0 2632 0 *** SEAWOOD Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 27 150 0.0467 347.00 0.0 2.6 2.63 15.00 350.00 343.00 PIPE 18 15 340.00 0.0 0.0 2.15 17.57 581.64 581.32 Lovell-Sauerland and Associates Appendix A Page A-6 0.32 -231.64 -238.32 ---------------------------------------------------- Lateral length= 150 Upstream length= 150 *** 88TH Analysis of Existing Pipes ' Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace ' 28 400 0.0200 371.00 0.0 1.8 1.81 5.42 374.00 366.00 PIPE 13 12 363.00 0.0 0.0 2.30 33.34 780.20 779.21 0.45 -406.20 -413.21 1 Lovell - Sauerland and Associates HYDRA Version 9.65 Lynnwood, Washington Page 6 C:\4\2926SCS.CMD ------------------------------------------ 10:26 8-Apr-96 ' CFS Vista Del Mar Basin Analysis *** 88TH Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel 29 900 0.0111 363.00 PIPE 14 12 353.00 30 230 0.0087 353.00 PIPE 15 12 351.00 31 230 0.0130 351.00 PIPE 16 15 348.00 32 375 0.0213 348.00 PIPE 17 15 340.00 33 500 0.0360 340.00 PIPE 18 15 322.00 34 450 0.0489 322.00 PIPE 19 18 300.00 35 650 0.1169 300.00 ' PIPE 20 18 224.00 ILovell-Sauerland and Associates d/D QRem DiffUp DiffDn Replace 0.0 7.3 7.27 4.04 366.00 356.00 ***/*** 0.0 0.0 9.26 180.10 779.21 745.48 12 0.90 3.23-413.21-389.48 15 0.0 17.9 17.90 3.57 356.00 354.00 ***/*** 0.0 0.0 22.79 501.11 745.48 684.83 21 0.90 14.32-389.48-330.83 24 0.0 20.6 20.61 7.93 354.00 351.00 ***/*** 0.0 0.0 16.80 259.94 684.83 666.45 18 0.90 12.68-330.83-315.45 24 0.0 30.6 30.65 10.14 351.00 343.00 ***/*** 0.0 0.0 24.98 302.19 666.45 581.32 21 0.90 20.51-315.45-238.32 24 0.0 33.7 33.73 13.18 343.00 325.00 ***/*** 0.0 0.0 27.48 255.99 581.32 448.18 18 0.90 20.55-238.32-123.18 24 0.0 37.6 37.57 24.97 325.00 303.00 ***/*** 0.0 0.0 21.26 150.47 448.18 400.56 15 0.90 12.60-123.18 -97.56 21 0.0 43.1 43.13 38.61 303.00 227.00 ***/*** 0.0 0.0 24.40 111.68 400.56 300.77 10 0.90 4.51 -97.56 -73.77 21 Appendix A Page A-7 36 240 0.0917 224.00 PIPE 21 18 202.00 37 450 0.0222 202.00 PIPE 22 24 192.00 *** 88TH 0.0 59.8 59.81 34.19 0.0 0.0 33.84 174.92 0.90 25.62 0.0 61.4 61.37 36.26 0.0 0.0 19.54 169.27 0.90 25.12 Shape Invert Surf FreBrd width San Link Long L/C/R Up/Dn Up/Dn Up/Dn Depth Inf 227.00 205.00 ***/*** 300.77 213.20 18 -73.77 -8.20 24 205.00 195.00 ***/*** 213.20 194.00 21 -8.20 1.00 30 Channel Sto Flow Estimated Mis Vel Cost Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington Page 7 C:\4\2926SCS.CMD 10:26 8-Apr-96 CFS Vista Del Mar Basin Analysis 38 500 3.000 192.00 193.08 1.9 8.46 0.00 63.53 63.53 0 Swale to bas 2.00 145.00 146.08 3.9 1.08 0.00 0.00 11.30 3.000 Slope = 0.0940 Froude Number = 2.44 *** 88TH Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 39 350 0.1143 145.00 0.0 63.5 63.53 82.22 150.00 115.00 PIPE 23 24 105.00 0.0 0.0 20.22 77.26 168.58 123.74 0.74 -18.58 -8.74 40 170 0.1280 105.00 0.0 65.6 65.63 87.02 115.00 90.80 PIPE 24 24 83.24 0.0 0.0 20.89 75.42 123.74 101.47 0.73 -8.74 -10.67 ---------------------------------------------------- Lateral length= 5445 Upstream length= 11125 ---------------------------------------------------- Lateral length= 0 Upstream length= 0 HYDRA INPUT FILE JOB Vista Del Mar Basin Analysis DPD .012 20 3 2 3 .005 2 24 EPD .012 2 .9 0 CHD 10 1 .03 3 2 3 1 2 1 1 .01 UNP 0.03 .15 0.25 0.10 .02 2 .02 2 .2 30 480 .1 2 4 48 TOT 3.0 Lovell-Sauerland and Associates Appendix A Page A-8 I REM Type IA 24-hour storm at 10 minute interval per KCSWDM HYE 10 + 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 + 0.0040 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0060 0.0060 + 0.0060 0.0060 0.0060 0.0060 0.0070 0.0070 0.0070 0.0070 0.0070 + 0.0070 0.0082 0.0082 0.0082 0.0082 0.0082 0.0082 0.0095 0.0095 + 0.0095 0.0095 0.0095 0.0095 0.0134 0.0134 0.0134 0.0180 0.0180 + 0.0340 0.0540 0.0270 0.0180 0.0134 0.0134 0.0134 0.0088 0.0088 + 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 + 0.0088 0.0072 0.0072 0.0072 0.0072 0.0072 0.0072 0.0072 0.0072 + 0.0072 0.0072 0.0072 0.0072 0.0057 0.0057 0.0057 0.0057 0.0057 + 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0050 0.0050 + 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 + 0.0050 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 + 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 + 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 + 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 + 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 REM --- Continuous rainfall simulation criteria --- PAV 0.020 .05 .02 .1 .15 15 0.003 NEW point REM HYD 5.22 150 .07 .325 10 [Sub -basin 121 OLF 150 .07 1.3 .03 SCS 5.22 .325 98 85.3 19..1 500 15 [Sub -basin 121 epi 10 345 344 342 341 12 [dummy pipe] RED (0/0 2500/1 2700/3 6000/5) RES 341 340 353 OVER11 REC OVER11 EPI 150 343 330 340 327 12 [DUMMY PIPE) HOL PP NEW TER MAR REM HYD 6.2 300 .03 .143 OLF 150 .03 1.3 .03 SCS 6.2 .143 98 85.3 18 RED (0/0 3100/1.24 3200/3 6000/5) RES 341 340 353 OVER12 REC OVER12 15 [Sub -basin 11B] .04 300 [Sub -basin 11B] EPI 150 343 330 340 327 12 [DUMMY PIPE] HOL TM NEW North 84th Ave W. REM HYD 3.1 100 .02 .461 15 [Sub -basin 61 OLF 100 .02 1.3 .03 SCS 3.1 .461 98 85.3 20 .03 500 15 [Sub -basin 61 EPI 400 385 350 382 347 12 [PIPE 11 REM HYD 6.2 300 .03 .143 15 [Sub -basin 11A] OLF 300 .03 1.3 .03 SCS 6.2 .143 98 85 18 .04 500 20 [Sub -basin 11A] CHA 800 350 330 347 327 [Swale to basin 171 REC TM REC PP EPI 600 330 250 327 247 12 [PIPE 2] HOL 84TH Lovell-SaueHand and Associates Appendix A Page A-9 I ' REM ------------------------------------------------------- NEW Seaview Heights Basin REM HYD 20.14 300 .02 .283 20 [Sub -basin 31 OLF 300 .02 1.3 .03 SCS 20.14 .283 98 85.3 8 .015 1200 10 [Sub -basin 31 ^-- WARNING - Parameter 7 normally not greater than 500.00 EPI 200 380 368 377 365 12 [PIPE 3] REM HYD 4.66 150 .03 .263 10 (Sub -basin 4] OLF 150 .03 1.3 .03 SCS 4.66 .263 98 85.3 19 .02 500 15 [Sub -basin 4] EPI 450 368 356 365 350 12 [PIPE 41 HOL SEAVIEW REM------------------------------------------------------- NEW Helleren Lane 1 REM HYD 7.46 200 .025 .479 10 [Sub -basin 7A) OLF 200 .025 1.3 .03 SCS 7.46 .479 98 85.3 19 .05 450 15 [Sub -basin 7A] EPI 450 397 375 394 360 12 [PIPE 5A] HOL HELL NEW Helleren Lane 2 ' REM HYD 7.46 200 .025 .383 10 [Sub -basin 7B) OLF 200 .025 1.3 .03 SCS 7.46 .383 98 85.3 19 .05 450 15 [Sub -basin 7B] ' RED (0/0 2000/.8 2100/3 6000/5) RES 370 360 370 OVER13 REC REC OVER13 HELL EPI 700 375 350 360 345 12 [PIPE 51 HOL HELLEREN ' REM-------------------------------------------------------- NEW Olympic View Drive REM HYD 6.43 300 .07 .178 10 [Sub -basin 15] ' OLF 300 .07 1.3 .03 SCS 6.43 .178 98 85.3 4 .05 1000 20 (Sub -basin 151 ^-- WARNING - Parameter 7 normally not greater than 500.00 EPI 350 265 256 262 253 12 [PIPE 8] ' REM HYD 5.17 150 .1 .152 5 [Sub -basin 16] OLF 150 .1 1.3 .03 SCS 5.17 .152 98 85.3 5 .15 450 10 [Sub -basin 161 ' EPI 270 256 249 253 246 12 [PIPE 9] REC 84TH REM HYD 4.82 150 .1 .27 10 [Sub -basin 17] ' OLF SCS 150 .1 1.3 .03 4.82 .27 98 85.3 20 .08 400 10 [Sub -basin 171 EPI 370 249 239 246 236 12 [PIPE 101 REM HYD 4.1 150 .1 .268 10 [Sub -basin 18) OLF 150 .1 1.3 .03 ' SCS 4.1 .268.98 85.3 20 .08 350 15 [Sub -basin 18] EPI 250 239 233 236 230 12 (PIPE 111 REM HYD 3.73 150 .1 .235 . 10 [Sub -basin 19] OLF 150 .1 1.3 .03 SCS 3.73 .235 98 85.3 20 .08 350 15 (Sub -basin 191 ILovell-Saueiland and Associates Appendix A Page A-10 EPI 230 233 227 230 224 12 [PIPE 121 HOL OVD ' REM ------------------------------------------------------ NEW HALO HAVEN REM HYD 8.03 300 .02 .345 10 [Sub -basin 2B] OLF 300 .02 1.3 .03 ' SCS 8.03 .345 98 85.3 7 .04 500 15 [Sub -basin 2B] RED (0/0 4000/1.6 4100/3 6000/5) RES 368 367 378 OVER14 ' REC EPI OVER14 150 370 366 367 363 12 [DUMMY PIPE] HOL HH NEW SEAWOOD REM HYD 5.51 150 .03 .277 10 [Sub -basin 10B] OLF 150 .01 1.3 .03 SCS 5.51 .277 98 85.3 19 .02 150 10 [Sub -basin 10B] RED (0/0 2700/1.1 2800/3 6000/5) RES 344 343 354 OVER15 REC OVER15 EPI 150 350 343 347 340 15 [PIPE 18] HOL SW NEW 88TH ' REM HYD 3.73 300 .02 .386 10 [Sub -basin 11 OLF 300 .02 1.3 .03 SCS 3.73 .386 98 85.3 7 .05 200 15 [Sub -basin 1] EPI 400 374 366 371 363 12 [PIPE 13) REM HYD 4.82 300 .02 .51 10 [Sub -basin 2A] OLF 300 .02 1.3 .03 SCS 4.82 .51 98 85.3 7 .04 500 15 [Sub -basin 2A] REC HH EPI 900 366 356 363 353 12 [PIPE 14] REM HYD 6.46 300 .04 .21 10 [Sub -basin 5] OLF 300 .04 1.3 .03 SCS 6.46 .21 98 85.3 7 .02 200 15 [Sub -basin 51 ' REC SEAVIEW EPI 230 356 354 353 351 12 [PIPE 151 REM HYD 5.97 300 .06 .258 10 [Sub -basin 8] OLF 300 .06 1.3 .03 SCS 5.97 .258 98 85.3 19 .005 350 15 [Sub -basin 8] EPI 230 354 351 351 348 15 [PIPE 161 REC HELLEREN REM HYD 6.46 200 .01 .238 10 [Sub -basin 9] OLF 200 .01 1.3 .03 SCS 6.46 .238 98 85.3 19 .005 400 15 [Sub -basin 9] ' EPI REM 375 HYD 351 343 5.02 150 348 340 .03 .394 15 [PIPE 171 10 [Sub -basin 10A] OLF 150 .01 1.3 .03 SCS 5.02 .394 98 85.3 19 .02 800 15 [Sub -basin 10A] ^-- WARNING - Parameter 7 normally not greater than 500.00 ' REC SW EPI 500 343 325 340 322 15 [PIPE 181 REM HYD 8.84 300 .03 .347 10 [Sub -basin 13] OLF 300 .03 1.3 .03 ' SCS 8.84 .347 98 85.3 7 .02 500 15 [Sub -basin 13] ' Lovell-Sauerland and Associates Appendix A Page A-11 ' EPI 450 325 303 322 300 18 [PIPE 191 REM HYD 11.94 150 .01 .26 10 [Sub -basin 141 OLF 150 *01 1.3 .03 ' SCS 11.94 .26 98 85.3 19 .05 500 15 [Sub -basin 141 EPI 650 303 227 300 224 18 (PIPE 201 REC OVD EPI 240 227 205 224 202 18 [PIPE 211 ' REM HYD 3.1 150 .1 .343 10 (Sub -basin 20) OLF 150 .1 1.3 .03 SCS 3.1 .343 98 85.3 15 .12 300 15 [Sub -basin 20] ' EPI REM 450 HYD 205 115 202 192 4.36 150 .1 .298 24 10 [PIPE 221 (Sub -basin 21] OLF 150 .1 1.3 .03 SCS 4.36 .298 98 85.3 15 .2 500 15 [Sub -basin 21] CHA 500 195 150 192 145 (Swale to basin 211 ' - WARNING - Maximum design velocity violated EPI 350 150 115 145 105 24 [PIPE 231 REM HYD 4.42 150 .1 .231 10 [Sub -basin 22] OLF 150 .1 1.3 .03 SCS 4.42 .231 98 85.3 19 .01 300 15 (Sub -basin 221 REM BEGIN ACTUAL PIPE DIMENSIONS EPI 170 115 90.80 105 83.24 24 [PIPE 241 hol basin END This HYDRA output table (following) shows the maximum flow the lower pipe system can handle without spilling from the upstream catchbasin. Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington Page 1 C:\4\2926PIPE.CMD 10:42 21-Nov-95 CFS Vista Del Mar Downstream Pipe Capacity Analysis *** downstream Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel ' d/D QRem DiffUp DiffDn Replace 1 170 0.1280 105.00 0.0 0.0 55.00 87.02 115.00 90.80 PIPE 24 24 83.24 0.0 55.0 25.66 63.21 106.29 84.53 ' 0.65 8.71 6.27 2 140 0.3434 83.24 0.0 0.0 55.00 142.52 90.80 62.54 PIPE 25 24 35.17 0.0 55.0 36.12 38.59 84.21 36.14 ' 0.49 6.59 26.40 3 80 0.2360 35.17 0.0 0.0 55.00 118.16 62.54 22.29 PIPE 26 24 16.29 0.0 55.0 31.66 46.55 36.25 17.37 ' 0.54 26.29 4.92 4 40 0.0518 16.29 0.0 0.0 55.00 55.33 22.29 22.00 PIPE 27 24 14.22 0.0 55.0 18.46 99.40 18.08 16.01 ' ---- ----------4-21----5.99 Lateral length= 430 Upstream length= 430 Lovell-Sauerland and Associates Appendix A Page A-12 '� 1 Even at a maximum capacity of 55 cfs, the last pipe is still undersized for the 100-year peak runoff of 65.63 cfs. Therefore, the Vista Del Mar project will require detention to comply with ' city code. The detention will not eliminate the potential flooding, but will mitigate any possible impact by the Vista Del Mar development. In summary, given the apparent lack of downstream pipe capacity, the project will need to provide detention for the plat because: The entire upstream basin produces a calculated runoff greater than the capacity of that pipe, and 2. Even though the pipe network feeding that pipe is of a lower capacity, it cannot be guaranteed on paper that the combination of pipe and gutter flow would not deliver enough water to overflow it. It also cannot be guaranteed that the City won't correct the existing upstream capacity deficiencies. 3. The potential flooding of the BNRR property is an existing situation which may occur, with or without the plat. Construction of the plat will likely result in a small incremental increase in the probable maximum flow. 4. Construction of a detention system for the plat will not eliminate this problem. It will only mitigate the new plat's share of the problem, and "prove" that the plat is not a contributor to future flooding. Since there is a potential downstream problem, which the plat may aggravate, the letter of the code must be fulfilled to limit future liability. I Lovell-Sauerland and Associates Appendix A Page A-13 moo 0 "L 0 co 2 2 � rJ O Q ' o°j? 2vo'�� Qoov 0 2?�O•v 1L�G"k1 c�' e Orp 1 \ Q. \ V OTC\/ rS�JDb ' O r r „5a � ^' q,-. q .t�.oc., r ? t•.e - ••`F. w r• ,Z"' f,v a- � r as r.i �.,r i '+ry P v+ a ✓°>"�c: y .T ^e� `, C 4 F y, s `� • 3 Ct ' - d t R S ° .i'� �° E } ' t^ : 8 G � x - `4 II -BROW ' 8AY' NY f W K• • ",;'-z. "`"S ham- -5�w' .�.e+; 5 .r<�:a•:..- _ . S `.a � -° �+. r'?^. : > e' ay'�rt.- it[/�� +^ti$.,�. s• � '""�� ,� � y'.,il� Y.d' "8 4-� '3 ';,�. 4'*q -watl� s�`w' • % ' Ss� Jte ;a .r, '�i i' viilee: Pe' rrin Q° � ay, �eK"k�eOM �^Y na k!r air Rsi Vp a b' ... � ''f � � � e yY h-.8 ����f•rw•'Saa. : s a . �k3 -• y� ; _ . `�'l +�-.��a`'eG' �'Cf.,ga• „w•' e a du, .. � a . P�, w w e.` 1 ,� - ea,0. w ' d'k`.3, ,�` ;'� 3' • '.� � !'°"•' q ^w yr "',,� `•'' { .�-• � �!`! "� , � ^ g>'�!••'.. � a � 'yyam w ^ � r f � ''4; i -�� "`i �'.yx � ' �Y.. ,a � � � to . �3� � �• a (Joins sheet 57) 7007 v15fatd ( W S�REEi FILE LOVELL-SAUERLAND &ASSOCIATES, INC. 19400 33rd Avenue W. Lynnwood, WA 98036 REVISED DETENTION STORAGE CALCULATIONS AND DRAINAGE BASIN REPORT FOR PLAT OF VISTA DEL MAR on Olympic View Drive at 92nd Avenue West, Edmonds Prepared.13y: x1Z-1 1171--24i;712��N. CONTENT OF REVISION detention pipes being linked in f The drainage and detention was reevaluated based on thep p 9 series rather than in parallel. Also, the peak runoff rate from the bypass has been corrected. Both changes resulted in a lower detention requirement. Even so, the designed detention systems remain at the orignal size, providing a moderate factor of safety against overtopping. The changes will be seen in the calculations and calculation summary. PROPOSED DEVELOPMENT AND EXISTING CONDITONS % The project consists of the subdivision of several_ contiguous land parcels into approximately 15 lots for construction of single family dwellings. Subdivision improvements would include the construction of public and private roads, utilities, and a storm water collection system. The properties are situated at the top of a bluff adjacent to Puget Sound. A 100-foot wide Burlington Northern Railroad right-of-way lies between Puget Sound and the property. The site is currently occupied urrentl b two houses and some small out -buildings. The smaller of the Lf . p Y houses lies at the south boundary of the site, and is accessed by an off -site private road from the south. The larger house lies near the center of the. site, and is accessed by a looped driveway having a total length of about 1000 feet. About a half of the site is clear of trees and brush, and has historically been lawn with large landscape shrubs and trees. The remainder of the site is covered with second growth evergreen forest. Existing Sanitary sewer and storm drainage systems cross the northernmost portion of the site. The northern portion of the site is accessed by easement through an adjacent single family lot. EXISTING DRAINAGE CONDITIONS all �i All surface. runoff from the site eventually drains to the drainage ditch in the BNRR right-of-way. Most is apparently transported by direct overland flow, but some from the. site's forested area is possibly collected in the private systems to the south. These private systems would also eventually discharge in the same BNRR ditch. The ditch drains to the 18-inch culvert crossing under the tracks adjacent to the site. The northernmost end of the piped storm drainage system crossing the site discharges into Puget sound just north of the site. It drains a basin which includes roughly 155 acres, but does not currently include any significant portion of the site. This basin is discussed in detail below, as it is proposed to use this system to convey future developed runoff. A study of the overall basin was completed by URS Consultants for the City of Edmonds, Lovell-Sauerland and Associates October 29, 1996 Page 2 as documented in their report Edmonds Drainage Basin Studies" dated June 1989. The basin was one of several subbasins identified in the Talbot Park Drainage Basin. Portions of the study relating to this basin were provided in a preliminary report to the City dated 4/23/93 (by Lovell-Sauerland). It was noted that the elements in the area of the project in general had sufficient capacity to convey the 100 year storm in a future "built -out" basin. Upstream system capacities (above the proposed development) fall well short of the requirements for this particular design storm. DRAINAGE ISSUES The drainage improvements must address two basic issues. First, it is considered desirable to reduce or eliminate surface runoff onto or near the face of the bluff. In particular, concentrated flows from impervious areas must be collected and safely conveyed so as not to increase erosion on the face of the bluff. Due to the BNRR right-of-way and the intolerance the BNRR has demonstrated for improvements by others in land they control, and due to the steepness of the bluff sloping to the BNRR right-of-way, it is not considered feasible to convey storm runoff by any new piped system to Puget Sound, or to the BNRR ditch. Storm runoff must be conveyed by pipe to the existing storm sewer crossing the property. The proposed runoff collection system accomplishes this. The second issue is whether the runoff can be released without control or whether it must first be detained to match existing peak runoff levels. To answer this, the capacity needs of the upstream basin and available capacity of the downstream system were reviewed. The details of this study are at the end of this report in Appendix A. The study showed that even at a maximum capacity of 55 cfs, the last pipe in the downstream system is still undersized for the 100-year peak runoff from the basin of 65.63 cfs. Therefore, the Vista Del Mar project will require detention to comply with city code. The detention will not eliminate the potential flooding, but will mitigate any possible impact by the Vista Del Mar development. In summary, given the apparent lack of downstream pipe capacity, the project will need to provide detention for the plat because: 1. The entire upstream basin produces a calculated runoff greater than the capacity of that pipe, and / 2. Even though the pipe network feeding that pipe is of a lower capacity, it cannot be guaranteed on paper that the combination of pipe and gutter flow would not deliver enough water to overflow it. It also cannot be guaranteed that the City won't correct the existing upstream capacity deficiencies. Lovell-Sauerland and Associates October 29, 1996 Page 3 3. The potential flooding of the BNRR property is an existing situation which may occur, with or without the plat. Construction of the plat will likely result in a small incremental increase in the probable maximum flow. 4. Construction of a detention system for the plat will not eliminate this problem. It will only mitigate the new plat's share of the problem, and "prove" that the plat is not a contributor to future flooding. Since there is a potential downstream problem, which the plat may aggravate, the letter of the code must be fulfilled to limit future liability. DETENTION CALCULATIONS Calculations and the drainage plan -were completed to meet City of Edmonds 1995 standards, using an SCS-SBUH analysis. Since there is no downstream natural watercourse, the -criteria used includes restriction of 10-year and 100-year flows to match the existing runoff for each of those events. The model used for the analysis is called WaterWorksT"", which was developed by Engenious Systems Inc. The program generates runoff hydrographs for each design basin area and allows them to be routed through various configurations of storage and discharge structures. Through a process of trial and error, a,configuration is found that meets the criteria for the design storm. Due to the topography of the site, two detention pipes and a water quality swale are proposed. All of the impervious areas of the site will be conveyed by the biofiltration swale. About a 114 acre of the site bypasses the detention facilities, but the calculations demonstrate that the release criteria are met by comparing the sum of all developed release hydrogaphs with the existing site runoff. It is noted that although the sum of pipe discharges and the bypass peak flows exceed the discharge hydrogaaph,ishless.aks do not all occur at the same time and the peak of the total Assumptions used for the detention calculation include: 1. Site soils are of hydrologic group "C" 2. One offsite house will drain to the detention system, making a total of 3 existing homes. The total existing impervious area on and offsite is over 20,000 square feet. However, it is assumed that only 5,000 sf per home exists for the existing homes on the site. New impervious is assumed to be the area of the roads, plus 5,000 sf per lot. 3. The design storms are per the City's new ordinance. 4. Yard areas of lots 7-10 and 13-15 are already grass, and have been historically. The hydrologic character of these areas will not change, and they are not included in the calculation. Runoff from these areas can be routed to the drainage system if Lovell-Sauerland and Associates October 29, 1996 Page 4 needed, but have aLgligible effect on the detention system. 9 11 5. Existin .conditions are assumed to be 50 percent second growth forest and 50 percent meadow (with some existing impervious). SCS weighted average curve number calculations, are attached. Detailed detention storage calculations follow. A. DETENTION SUMMARY TABLE Recurrence interval Ale. I Year; 0.40 cfs A .10.0` Year,; 0.92 cfs Exist. development area runoff Peak pipe design discharge Pipe in Kairez Drive 0.24 cfs 0.55 cfs Pipe in Nicholas Lane 0.35 cfs 0.82 cfs Peak runoff from bypass area 0.11 cfs 0.16 cfs Design discharge (detention 0.39 cfs 0.89 cfs pipes + b ass Required detention storage Pipe in Kairez Drive 3,057 cf 4,785 cf Pipe in Nicholas Lane 1,508 cf 1,823 cf Provided Pipe in Kairez Drive 6,000 cf Pipe in Nicholas Lane 2,500 cf Note: Since the waterworks program does not model CMPA, and does not allow the inclusion of structures, the ultimate detention pipe configuration is based on the attached spreadsheets labelled "Detention pipe for Nicholas Lane" and "Detention pipe for Kairez Place." These provide the final pipe and orifice size and location. Lovell-Sauerland and Associates October 29, 1996 Page 5 B. DETENTION CALCULATION DETAILS -- Waterworks printout This run uses the two detention pipes in series instead of in parallel. The net result is a slight decrease in the necessary detention storage volume from the original arrangement. The pipe sizes have not been changed from the original design, to allow some additional factor of safety, and to give more flexibility in regard to the final impervious areas on the detained and bypass basins. Waterworks batch file: MOVE 10B TO 3 MOVE OOB TO 13 MOVE 10E TO 9 MOVE OOE TO 19 MOVE 1OFN TO 4 MOVE OOFN TO 14 LPOOL 1 1110-YEAR KAIREV 10E 10FK PIPEK CTRLK 1 LPOOL 2 11100-YEAR KAIRE V OOE OOFK PIPEK CTRLK 11 ADD 1 4 5 ADD 11 14 15 LPOOL 4 1110-YR NICHOLAS 10E 5 PIPEN CTRLN 2 LPOOL 5 1100-YR NICHOLAS" OOE 15 PIPEN CTRLN 12 ADD 2 3 10 ADD 12 13 20 Lovell-Sauerland and Associates October 29, 1996 Page 6 10/29/96 Lovell-Sauerland & Associates Inc page 1 --------------------- BASIN SUMMARY BASIN ID: OOB NAME: 100-YEAR DEVELOPED BYPASS SBUH METHODOLOGY TOTAL AREA.......: 0.27 Acres BASEFLOWS: 0.00 cfs RAINFALL TYPE....:--TY'PE'lA PERVIOUS AREA PRECIPITATION....: 3.00 inches AREA..: 0.00 Acres TIME INTERVAL....: 10.00 min CN....: 85.50 TIME OF CONC.....: 10.00 min IMPERVIOUS AREA ABSTRACTION COEFF: 0.20 AREA..: 0.27 Acres CN.... 98.00 PEAK RATE: 0.16 cfs VOL: 0.06 Ac-ft TIME: 480 min . BASIN ID: HE NAME: 100-YEAR EXISTING SBUH METHODOLOGY TOTAL AREA.......: 3.99 Acres BASEFLOWS: 0.00 cfs��� V` RAINFALL TYPE....: TYPEIA PERVIOUS AREA PRECIPITATION....: 3.00 inches AREA..: 3.65 Acres nl TIME INTERVAL....: 10.00 min CN....: 82.80 TIME OF CONC.....: 31.11 min IMPERVIOUS AREA ABSTRACTION COEFXL- '0.20 AREA..: 0_34 Acres CN....: 98 . �r,...� tf fff!ll��� TcReach - Sheet . 280.00 ns:0.4000 p2yr: 1.50 s:0.1600 PEAK RATE: 0.92 cfs VOL: 0.51 Ac-ft TIME: 490 min BASIN ID: OOFK NAME: 100-YEAR DEVELOPED KAIREZ_LANE SBUH METHODOLOGY TOTAL AREA.......: 2.71 Acres BASEFLOWS: 0.00 cfs RAINFALL TYPE....: TYPElA PERVIOUS AREA PRECIPITATION....: 3.00 inches AREA..: 1.22 Acres TIME INTERVAL....: 10.00 min CN....: 85.50 TIME OF CONC.....: 14.60 min IMPERVIOUS AREA ABSTRACTION COEFF: /0.20 AREA..: 1.49 Acres CN....: 98.00 TcReach - Sheet ✓L: 290.00 ns:0.1500 p2yr: 1.50 s:0.1600 PEAK RATE: 1.23 cfs VOL: 0.51 Ac-ft TIME: 480 min 10/29/96 Lovell-Sauerland & Associates Inc page 2�� BASIN SUMMARY �M( J �,vo BASIN ID: OOFN NAME: 100-YEAR DEVELOPED NICHOLAS LN SBUH METHODOLOGY J TOTAL AREA.......: 1.002�A,cres BASEFLOWS: 0.00 cfs S �' ��D� RAINFALL TYPE....: TYPElA PERVIOUS AREA PRECIPITATION....: 3.00 inches AREA..: 0.00 Acres h� TIME INTERVAL....: 10..00 min CN....: 85.50 TIME OF CONC.....: 10.00 min IMPERVIOUS AREA�- ABSTRACTION COEFF: / 0.20 AREA..: 1.02 Acres, v' CN..... 98.00 PEAK RATE: 0.61 cfs VOL: 0.23 Ac ft TIME: 480 min Lovell-Sauerland and Associates October 29, 1996 O Page 7 (,rr BASIN ID: 10B NAME: 10-YEAR DEVELOPED BYPASS SBUH METHODOLOGY TOTAL AREA.......: 0.27 Acres BASEFLOWS: 0.00 cfs RAINFALL TYPE....: TYPElA PERVIOUS AREA PRECIPITATION....: 2.00 inches AREA..: CN....: 0.00 Acres 1 85.50 'L7 "'d TIME INTERVAL....: 10.00 min AREA TIME OF,CONC..... : 10.00 min IMPERVIOUS ABSTRACTION COEFF: 0.20 AREA..: 0.27 Acres �/� CN....: TIME: 98.00 480 min PEAK RATE: 0.11 cfs VOL: 0.04 Ac-ft BASIN ID: 10E NAME: 10-YEAR EXISTING SBUH METHODOLOGY TOTAL AREA.......: 3.99 Acres BASEFLOWS: 0.00 cfs RAINFALL TYPE....: TYPElA PERVIOUS AREA PRECIPITATION....: 2.00 inches AREA..: 3.65 Acres TIME INTERVAL..... . 10.00 min CN..... 82.80 TIME OF CONC.....: 31.11 min IMPERVIOUS AREA ABSTRACTION COEFF: 0.20 AREA..: 0.34 Acres CN..... 98.00 TcReach - Sheet L: 280.00 ns:0.4000 p2yr: 1.50 s:0.1600 PEAK RATE: 0.40 cfs VOL: 0.26 Ac-ft TIME: 490 min 10/29/96 Lovell-Sauerland & Associates Inc page 3 BASIN SUMMARY . BASIN ID: 10FK NAME: 10-YEAR KAIREZ DEVELOPED SBUH METHODOLOGY TOTAL AREA.......: 2.71 Acres BASEFLOWS: 0.00 cfs RAINFALL TYPE....: TYPElA PERVIOUS AREA PRECIPITATION....: 2.00 inches AREA..: 1.22 Acres TIME INTERVAL....: 10.00 min CN....: 85.50 TIME OF CONC.....: 14.60 min IMPERVIOUS AREA ABSTRACTION COEFF: 0.20 AREA..: 1.49 Acres /" CN....: 98.00 1.50 s:0.1600 TcReach - Sheet IZ- 290.00 ns:0.1500 p2yr: PEAK RATE: 0.72 cfs VOL: 0.30 Ac-ft TIME: 480 min BASIN ID: 1OFN SBUH METHODOLOGY TOTAL AREA.......: RAINFALL TYPE....: PRECIPITATION....: TIME INTERVAL....:, TIME OF CONC.....: ABSTRACTION COEFF: NAME: 10-YEAR DEVELOPED NICHOLAS / 1.02 Acres BASEFLOWS: 0.00 cfs TYPElA PERVIOUS AREA 2.00 inches AREA:.: 0.00 Acres 10.00 min CN....: 85.50 10.00 min IMPERVIOUS AREA 0.20 . AREA..: 1.02 Acres PEAK RATE: 0.40 cfs VOL: Lovell-Sauerland and Associates CN..... 98.00 0.15 Ac-ft TIME: 480 min October 29, 1996 Page 8 10/29/96 Lovell-Sauerland & Associates Inc page 4 HYDROGRAPH SUMMARY PEAK TIME VOLUME HYD RUNOFF OF OF Contrib NUM RATE PEAK HYDRO Area cfs min. cf-AcFt Acres ' 10-year �� 0" 243 °' 590 13185 cf 2.71 1 2 .rylr� 0�3,54 19731 cf 3.73 3 ,-tj ✓600 .0.105 .. 4'80 1733 cf 0.27 j, 4 0.3- 98'V �40 6546 cf 1.02 l� I\k, 1-5 9 0.52145j 480 ° x 1l-_.3-U 490 19731 11207 cf cf 3.73 3.99� 10 1 Q.3,9A�520 21469 cf 4.00 100-year 11 0. 553 v/550 22083 cf 2.71 �0:) 12 �vQ.816 .510 32308, cf 3.73 13 0.162 r 480 2704 cf 0.27 14 0�.612✓480 10213 cf 1.02 ym� tPr�� 15 '`10.893 480' 32297 cf 3.73 19 JY 0.921 % 4909 ' 22284 cf 3.99 -� 20 1 0.895 510 35011 cf 4.00 .93 10/29/96 Lovell-Sauerland & Associates Inc STAGE STORAGE TABLE UNDERGROUND PIPE ID No. PIPEK Description: PIPE IN KAIREZ DRIVE Diameter: 7.50 ft. Length: 110.00 ft. Slope...: 0.0100 ft/ft Kairez detention release Nicholas detention release Bypass area runoff Nicholas undetained future' 1 + 4 / f) ko /v14- 4. .E - Existing site runoff Total developed releases('2 + Kairez detention release Nicholas detention release Bypass area runoff Nicholas undetained future it + 14 1/1 -/- �91 !- wj .: . Existing site runoff Total developed releases() 13) page 5 STAGE <---- STORAGE ---- > STAGE < ---- STORAGE ---- > STAGE <---- STORAGE ---- > STAGE <---- STORAGE ---- > (ft) ---cf-----Ac-Ft- (ft)---cf--- --Ac-Ft- (ft)---cf--- --Ac-Ft- (ft)---cf-----Ac-Ft- 146.00 0.0000 0.0000 148.20 815.50 0.0187 150.40 2512 0.0577 152.60 4174 0.0958 146.10 0.5751 0.0000 148.30 883.02 0.0203 150.50 2593 0.0595 152.70 4237 0.0973 146.20 3.2399 0.0001 148.40 951.99 0.0219 150.60 2674 0.0614 152.80 4297 0.0986 146.30 8.8909 0.0002 148.50 1022 0.0235 150.70 2756 0.0633 152.90 4355 0.1000 146.40 18.176 0.0004 148.60 1094 0.0251 150.80 2836 0.0651 153.00 4411 0.1013 146.50 31.621 0.0007 148.70 1167 0.0268 150.90 2918 0.0670 153.10 4464 0.1025 146.60 49.670 0.0011 148.80 1241 0.0285 151.00 2997 0.0688 153.20 4514 0.1036 146.70 72.717 0.0017 148.90 1316 0.0302 151.10 3077 0.0706 153.30 4560 0.1041 146.80 101.10 0.0023 149.00 1392 0.0319 151.20 3157 0.0725 153.40 4602 0.1057 146.90 135.13 0.0031 149.10 1468 0.0337 151.30 3236 0.0743 153.50 4639 0.1065 147.00 175.09 0.0040 149.20 1546 0.0355 151.40 3314 0.0761 153.60 4685 0.1076 147.10 221.23 0.0051 149.30 1624 0.0373 151.50 3391 0.0779 153.70 4725 0.1085 147.20 257.27 0.0059 149.40 1103 0.0391 151.60 3468 0.0796 153.80 4759 0.1092 147.30 299.51 0.0069 149.50 1782 0.0409 151.70 3544 0.0814 153.90 4787 0.1099 147.40 345.98 0.0079 149.60 1862 0.0428 151.80 3619 0.0831 154.00 4810 0.1104 147.50 395.94 0.0091 149.70 1942 0.0446 151.90 3693 0.0848 154:10 4828 0.1108 147.60 448.93 0.0103 149.80 2024 0.0465 152.00 3766 0.0864 154.20 4842 0.1112 147.70 504.59 0.0116 149.90 2104 0.0483 152.10 3837 0.0881 154.30 4851 0.1114 147.80 562.71 0.0129 150.00 2185 0.0502 152.20 3908 0.0897 154.40 4857 0.1115 147.90 622.99 0.0143 150.10 2267 0.0520 152.30 3977 0.0913 154.50 4859 0.1116 148.00 685.32 0.0157 150.20 2348 0.0539 152.40 4044 0.0928 154.60 4860 0.1116 148.10 749.54 0.0172 150.30 2430 0.0558 152.50 4110 0.0944 Lovell-Sauerland and Associates October 29, 1996 Page 9 10/29/96 Lovell-Sauerland & Associates Inc page b STAGE STORAGE TABLE UNDERGROUND PIPE ID No. PIPEN Description: PIPE IN NICHOLAS LANE Diameter: 5.00 ft. Length: 110.00 ft. g ' L? Slope...: 0.0100 ft/ft . STAGE <---- STORAGE ---- > STAGE <---- STORAGE ---- > STAGE < ---- STORAGE ---- > STAGE <---- STORAGE ---- > (ft)---cf--- --AC-Ft- (ft)---cf-----AC-Ft- (ft)---cf-----Ac-Ft- (ft)---cf-----Ac-Ft- 95.00 0.0000 0.0000 96.60 354.12 0.0081 98.20 1160 0.0266 99.80 1922 0.0441 95.10 0.4686 0.0000 96.70 397.19 0.0091 98.30 1214 0.0279 99.90 1955 0.0449 95.20 2.6343 0.0001 96.80 441.89 0.0101 98.40 1267 0.0291 100.00 1984 0.0455 95.30 7.2150 0.0002 96.90 488.10 0.0112 98.50 1320 0.0303 100.10 2020 0.0464 95.40 14.717 0.0003 97.00 535.57 0.0123 98.60 1372 0.0315 100.20. 2052 0.0471 95.50 25.549 0.0006 97.10 584.17 0.0134 98.70 1424 0.0327 100.30 2079 0.0477 95.60 40.040 0.0009 97.20 633.84 0.0146 98.80 1476. 0.0339 100.40 2102 0.0482 95.70 58.480 0.0013* 97.30 684.26 0.0157 98.90 1526 0.0350 100.50 2120 0.0487 95.80 81.113 6.0019 97.40 735.66 0.0169 99.00 1576 0.0362 100.60 2134 0.0490 95.90 108.16 0.0025 97.50 787.47 0.0181 99.10 1624 0.0373 100.70 2145 0.0492 96.00 139.78 0.0032 97.60 839.82 0.0193 99.20 1672 0.0384 100.80 2153 0.0494 96.10 176.16 0.0040 97.70 892.83 0.0205 99.30 1718 0.0394 100.90 2157 0.0495 96.20, 204.46 0.0047 97.80 946.11 0.0217 99.40 1763 0.0405 101.00 2159 0.0496 96.30 237.62 0.0055 97.90 999.51 0.0229 99.50 1806 0.0415 101.10 2160 0.0496 96.40 273.99 0.0063 98.00 1053 0.0242 99.60 1847 0.0424 96.50 312.96 0.0072 98.10 1107 0.0254 99.70 1886 0.0433 10/29/96 Lovell-Sauerland & Associates Inc page i STAGE DISCHARGE TABLE COMBINATION DISCHARGE ID No. CTRLK ! �, Description: KAIREZ DRIVE CONTROL STRUCTURE Structure:. OK Structure: RK Structure: STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE---> STAGE <--DISCHARGE --- > (ft) --- cfs--------- (ft) --- cfs--------- (ft) --- cfs--------- (ft) --- cfs--------- 146.00 0.0000 148.30 0.1067 150.60 0.1509 152.90 0.4750 146.10 0.0222 148.40 0.1090 150.70 0.1525 153.00 0.4835 146.20 0.0315 148.50 0.1112 150.80 0.1541 153.10 0.4918 146.30 0.0385 148.60 0.1134 150.90 0.1557 153.20 0.5000 146.40 0.0445 148.'70 0.1156 151.00 0.2222 153.30 0.5080 146.50 0.0497 148.80 0.1177 151.10 0.2506 153.40 0.5158 146.60 0.0545 148.90 0.1198 151.20 0.2728 153.50 0.5236 146.70 0.0589 149.00 0.1218 151.30 0.2917 153.60 0.5311 146.80 0.0629 149.10 0.1238 151.40 0.3086 153.70 0.5386 146.90 0.0667 149.20 0.1258 151.50 0.3239 153.80 0.5459 1.47.00 0.0703 149.30 0.1278 151.60 0.3382 153.90 0.5532 147.10 0.0738 149.40 0.1297 151.70 0.3515 154.00 0.5603 147.20. 0.0771 149.50 0.1316 151.80 0.3641 154.10 0.8753 147.30 0.0802 149.60 0.1335 151.90 0.3761 154.20 1.4453 ' 147.40 0.0832 149.70 0.1353 152.00 0.3875 154.30 2.1813 147.50 0.0862 149.80 0.1371 152.10 0.3985 154.40 2.9798 147.60 0.0890 149.90 0.1389 152.20 0.4091 154.50 3.2687 147.70 0.0917 150.00 0.1407 152.30 0.4194 154.60 3.5306 147.80 0.0944 150.10 0.1424 152.40 0.4293 154.70 3.7718 147.90 0.0970 150.20 0.1442 152.50 0.4389 154.80 3.9967 148.00 0.0995 150.30 0.1459 152.60 0.4483 154.90 4.2082 148.10 0.1019 150.40 0.1476 152.70 0.4574 155.00 4.4086 148.20 0.1043 150.50 0.1492 152.80 0.4663 Lovell-Sauerland and Associates October 29, 1996 Page 10 10/29/96' Lovell-Sauerland & Associates Inc page 8 STAGE DISCHARGE TABLE COMBINATION DISCHARGE ID No. CTRLN Description: NICHOLAS LANE CONTROL STRUCT Structure: ON Structure: Structure: RN Structure: STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > (ft) --- cfs--------- (ft) --- cfs--------- (ft) --- cfs--------- (ft) --- cfs--------- ------------------------------------------------------------- 95.00 0.0000 96.60 0.1373 98.20 0.1942 95.10 0.0343 96.70 0.1415 98.30 0.1972 95.20 0.0465 96.80 0.1456 98.40 0.2002 95.30 0.0595 96:90 0.1496 98.50 0.2031 95.40 0.0687' 97.00 0.1535 98.60 0.2060 95.50 0.0768 97.10 0.1573 98.70 0.2088 95.60 0.0841 97.20 0.1610 98.80 0.2116 95.70 0.0908 97.30 0.1646 98.90 0.4289 95.80 0.0971 97.40 0.1682 99.00 0.5205 95.90 0.1030 97.50 0.1716 99.10 0.5914 96.00 0.1085 97.60 0.1750 99.20 0.6515 96.10 0.1138 97.70 0.1784 99.30 0.7048 96.20 0.1189 97.80 0.1816 99.40 0.7532 96.30 0.1238 97.90 0.1849 99.50 0.7979 96.40 0.1284 98.0D 0.1880 99.60 0..8396 96.50 0.1329 98.10 0.1911 99.70. 0.8789 99.80 99.90 100.00 100.10 100.20 100.30 100.40 100.50 100.60 100.70 100.80 100.90 101.00 10/29/96 Love ll=Saue'rlanci & Associates"Inc' STAGE DISCHARGE TABLE MULTIPLE ORIFICE ID No. OK Description: ORIFICE FOR KAIREZ DRIVE _"•,." Outlet Elev: 1-+6 Va)!- Elev: 6.�-0 .ftIJ(pi @rifice Diameter: ' 1.610 .� ) Elev: izz--m ft Orifice 2 Diameter: 2.7500 n. V" � 0.9162 0.9518 0.9859 1.0187 1.0503 1.0808 1.1104 1.1391 1.4750 2.0654 2.8211 3.7106 3.9464 11 ---STA <--DISCHARGE---> STAGE <= DISCHARGETMM STAGE <--DISCHARGE --- > STAGE <-_-DISCHARGE --- > ( (ft) --- cfs--------- (ft) ---cfs-- ---> -------'_ `(ft)� -==cfs=-------- --("ft") �- -cfs--------- �'t� 146.00 0.0000 148.30 0.1067 150.60 /0.1509 152.90 0.4750 146.10 0.0222 148.40 0.1090 150.70 0.1525 153.00 0.4835 t 146.20 0.0315. 148.50 0.1112 150.80 0.1541 153.10 0.4918 146.30 0.0385 148.60 0.1134 150.90 0.1557. 153.20 0.5000 146.40 0.0445 148.70 0.1156 151.00 0.2222 153.30 0.5080 0.0497 148.80 0.1177 151.10 0.2506 153.40 0.5158 V146.50 146.60 0.0545 148.90 0.1198 151.20 0.2728 153.50 0.5236 146.70 0.0589 149:00 0.1218,P� 151.30 0.2917 153.60 0.5311 ' 146.80 0.0629 149.10 0.1238 151.40 0.3086 153.70 0.5386 146.90 0.0667 y%149.20 0.1258 151.50' 0.3239 153.80 0.5459 (� 147.00 0.070 149.30 0.1278 151.60 0.3382 153.90 154.00 0.5532 j} vQtf� 0.5603�' 147.10 0. 38 149.40 0.1297 151.70 0.3515 147.20 0.0771 149.50 0.1316 151.80 0.3641 154.10 0.5673 J' G 147.30 0.0802 149.60 0.1335 151.90 0.3761 154.20 0.5742 147.40 0.0832 149.70 0.1353 152.00 0.3875 154.30 0.5811 147.50 0.0862 149.80 0.1371 152.10 0.3985 154.40 0.5878 147.60 147.70 0.0890 0.0917 149.90 150.00 0.1389 0.1407 i 152.20 `�'✓ 152.30 0.4091 0.4194 154.50 154.60 0.5945 0.6010 147.80 0.0949 150.10 0.1424 152.40 0.4293 154.70 0.6075 147.90 0.0970 150.20 0.1442 152.50 0.4389 154.80 0.6140 1� 148.00 0.0995 s�� 150.30 0.1459 152.60 0.4483 154.90 0.6203 148.10 0.1019 150.40 0.1476 152.70 0.4574 155.00 0.6266 148.20 0.1043 150.50 0.1492 152.80 0.4663 Lovell-Sauerland and Associates October 29, 1996 Page 11 10/29/96 Lovell-Sauerland & Associates Inc page 10 -------------------- STAGE DISCHARGE TABLE MULTIPLE ORIFICE ID No. ON Description: ORIFICE IN NICHOLAS LANE Outlet Elev: 95.00 Elev: 95.00 ft Orifice Diameter: 2.0000 in. Elev: 98..80 ft Orifice 2 Diameter: 5.0000 in. STAGE <--DISCHARGE---> STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > (ft) ---cfs--------- (ft) --- cfs--------- (ft) ---cfs--------- ------(ft)-----cfS--===________ 95.00 0.0000 96.60 0.1373 98.20 0.1942 99.80 0.9162 95.10 0.0343 96.70 0.1415 98.30 0.1972 99.90 0.9518 95.20 0.0485 96.80 0.1456 98.40 0.2002 100.00 0.9859 95.30 0.0595 96.90 0.1496 98.50 0.2031 100.10 1.0187 95.40 0.0687 97.00 0.1535 98.60 0.2060 100.20 1.0503 95.50 0.0768 97.10 0.1573 98.70- 0.2088 100.30 1.0808 95.60 0.0841 97.20 0.1610 98.80 0.2116 -- 100.40 1.1104 95.70 0.0908 97.30 0.1646 98.90 0.4289• 100.50 1.1391 95.80 0.0971 97.40, 0.1682 99.00 0.5205 100.60 1.1671 95.90 0.1030 97.50 0.1716 99.10 0.5914 100.70 1.1943 96.00 0.1085 97.60 0.1750 99.20 0.6515 100.80 1.2209 96.10 0.1138 97.70 0.1784 99.30 0.7048 100.90 1.2468 96.20 0.1189 97.80 0.1816 99.40 0.7532 101.00 1.2�72-2 96.30 0.1238 97.90 0.1849 99.50 0.7979 ' 96.40 0.1284 98.00 0.1880 99.60 0.8396 96.50 0.1329 98.10 0.1911 99.70 0.8789 w 10/29/96 Lovell-Sauerl and & Associates Inc page 11 STAG E-DIS CHARGE•.TABLE....... •-- - ��- RISER DISCHARGE VD No. RK Description: RISER IN KAIREZ DRIVE ^ - Riser Diameter (in): 12.100 elev: 154.00 ft ! l/ Weir Coefficient...: 3.782 height: 155.00 ft Orif Coefficient...: 93-39 increm: 0.10 ft STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE---> STAGE <--DISCHARGE --- > (ft) --- cfs--------- (ft) --- cfs--------- (ft) --- cfs--------- (ft) --- cfs--------- 154.00 0.0000 154.20 0.8711 154.50 2.6743 154.80 3.3827 154.00 0.0000 154.30 1.6003 154.60 2.9295 154.90 3.5879 154.10 0.3080 154.40 2.3919 154.70 3.1642 155.00 3.7820 10/29/96 RISER DISCHARGE Description: RIS Riser Diameter ( Weir Coefficient Orif Coefficient Lovell-=Sauerland & Associates Inc page 12 STAGE DISCHARGE TABLE---•- - - ---- -- `ID No. RN o R IN FEZ DRIVE n): 12.00 elev: 100.50 ft 3.782 height: 101.00 ft �- 9 739 increm:- 0.10 ft STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > STAGE <--DISCHARGE --- > (ft) --- cfs-- ------- (ft) --- cfs-- ------- (ft) --- cfs--------- (ft) --- cfs--------- 100.50 0.0000 100.60 0.3080 100.80 1.6003 101.00 2.6743 100:50 0.0000 100.70. 0.8711 100.90 2.4638 101.00 2.6743 Lovell-Sauerland and Associates October 29, 1996 Page 12 5 10/29/96 Lovell-Sauerland & Associates Inc page 13 LEVEL POOL TABLE SUMMARY MATCH INFLOW -STO- -DIS- <-PEAK-> STORAGE <-------- DESCRIPTION --------- > (cfs) (cfs) --id- --id- <-STAGE> id VOL (cf) 10-YEAR KAIREZ ............... 0.40 0.72 PI�'EK CTRLK 53:07-�.1 3057.33 100-YEAR KAIREZ 0.92 ]:.23 PTPEK CTRLK 153.89i11 4785.45 10-YR NICHOLAS 0.40 0.52. PIPEN CTRLN 98,8_7- 2 1508.76 100-YR NICHOLAS .............. 0.92 0.89 PIPEN CTRLN 99.54 12 1823.33 Lovell-Sauerland and Associates October 29, 1996 Page 13 23-Aug-96 VISTA DEL MAR, LSA 2926 08_54 AM SCS Weighted average curve number calculations SCS Hydrologic Soils type:- C C EXISTING BASIN n/a n/a TOTAL 174,000 0 0 174,000 Basin area,.sf. 3.99 0.00 0.00 3.99 Basin area, acres: Existing conditions (in square feet) Assumptions: - CN: 76 0 0 0 Undisturbed forest land 76 81 87000 81 81 87,000 Second growth forest 85 , 72,000 85 72,000 Meadow or pasture . 86 86 Grass, > 75% coverage 87 87 Dirt road/parking lot 89 Gravel road/parking lot 89 90 Grass, > 50% coverage 90 92 Orchard with crop cover 92 94 Cultivated land 94 98 15,000 98 15,000 Impervious Existing onsite impervious = 13,900 Open water 100 _ 100 Total Weighted CN for each basin: 84.1 �+ 76.0 76.0 - 84.1 Pervious: 3.65 0.00 0.00 3.65 Area, acres: 82.8 82.8 76.0 76.0 82.8 Weighted CN: Impervious: 0.34 0.34 Area, acres: 0 8.6 /o 8.6% Percent impervious area: y Detention 1 Detention 2 bypass ^~ TOTAL Future conditions Total AC: 2.71 118,000 1.02 44,250 0.27 11,750 3.99 174,000 Total sf: Assumptions: CN: CN: 76 Undisturbed forest land 76 81 4,818 81 0 0 4,818 Second growth forest (@ 10% of grass) Meadow or pasture 85 86 48,182 85 86 0 0 48,182 Grass, > 75% coverage 87 87 Dirt road/parking lots 89 Gravel road/parking lot 89 90 Grass, > 50% coverage 90 92 Orchard with crop cover 92 94 Cultivated land 94 198 65,000 98 44,250 11,750 121,000 Impervious Other impervious 5,000 8,000 1,750 14,750 LF of road/sidewalk, plat road: 500 500 Avg. Width of road/sidewalk 30 ft 250 450 LF of road/sidewalk, frontage: 200 Avg. Width of road/sidewalk 25 ft 6 2 16 No. of houses/lots House/lot impervious 5,000 sf/lot 8 5,000 5,000 5,000 Open water _100 100 ------------------------ Total Weighted CN for'each basin: 92.4 98.0 98.0 94.2 �^ Pervious: 1.22 0.00 0.00 1.22 Area, acres: 85.5 85.5 85.5 85.5 85.5 Weighted CN: Impervious: 149 1.02 0.27 2.78 Area, acres: 551 % 100.0% 100.0% 69.5% Percent impervious area: DRAINAGE CALCULATIONS 29-Oct-96 DETENTION PIPE FOR KAIREZ PLACE 12:35 PM DETENTION PIPE SIZE Estimate of required detention storage volume = 6000 cf Assume a det. pipearch 117.0 x 79.0 (width and height) Cross section area = 52.0 sf Usable vol. of Type I CB 6.0 sf/ft = cf Usable vol. of 2.0 Type 11 MH 54.0 inch dia = 209.4 cf Usable vol. of Type 11 MH 72.0 inch dia = cf Usable vol. of 18.0 inch pipe: ft tong = cf Usable vol. of 36.0 inch pipe: 4.0 ft long = 28.3 cf Required pipe volume = 5762.3 cubic feet Required pipe length = 110.8 linear feet Length of pipe used = 111.0 FT. Storage provided = 6009.7 cubic feet Minimum grade elevations: Top D/S detention CB 156.07 with 2.50 ft Overflow clearance Top D/S detention CB 154.96 with 2.0 ft cover Top U/S detention CB 155.57 with 2.0 ft cover Min Grnd surf. elev 154.07 (over any inlet: 0.5 ft above OF Inv elev at U/S end = 146.94 Max water surface elev = 153.57 (detn. pipe sl. = 0.50% ) Invert elevation = 146.38 CALCULATION OF OUTLET SIZE Required release rate, orifice 1 = 0.320 Required release rate, orifice 2 = 0.380 Required release rate, orifice 3 = . Storage At elevation: H, ft a, sf d,ft d,inches provd. �^ 146.38 6.63 0.025 0.18 2- 3/16 0 149.50 3.51 0.041 0.23 2- 3/4 2966 -0 Full storage = 6010 area, a=Qdo/(.62x(2xgxh)".5) g=32.2 orifice diameter, d = ( 4/pi x a)"'.5 o.e 16 U W C 0.4 W 21 ca t- 06 0 J i 100-YEAR TARGET Q 10-YEAR TARGET 2 4 6 ° Thousands Detention Volume, cubic feet Max water surface elev = 153.01 (detn. pipe sl. _ % Total Total I Depth -round pipe wetted -I Hyd wetted I-arrpa-I Wetted Pipe Struc. Or. 1 Or. 2 Or. 3 Vol Q-- Water Surf feet width R Area Area. Vol. Vol. rel. rel. rel. - Elev. - 0.000 0.000 146.380 146.506 0.126 1.80 0.56 0.15 0.364 40 4.6 0.044 45 0.044 146.632 0.252 2.53 0.79 0.43 1.092 121 9.1 0.062 130 0.062 146.758 0,378 3.06 0.97 0.78 1.820 202 , 13.7 0.076 216 0.076 146.884 0.504 3.50 1.12 1.20 2.548 283 18.2 0.088 301 0.088 147.011 0.631 3.87 1.26 1.66 3.276 364 22.8 0.099 386 0.099 147.137 0.757 4.20 1.38 2.17 4.134 459 27.3 0.108 486 0.108 147.263 0.883 4.49 1.50 2.72 5.122 569 31.9 0.117 600 715 0.117 0.125 147.389 1.009 4.74 1.61 3.30 6.110 678 36.4 0.125 829 0.132 147.515 1.135 4.97 1.71 3.92 7.098 788 41.0 0.132 147.641 1.261 5.18 1.81 4.56 8.086 898 45.5 0.140 943 0.140 147.767 1.387 5.37 1.91 5:22 19.230 1025 50.1 0.146 1075 0.146 147.893 1.513 5.54 2.00 5.91 9.880 1097 1241 54.6 59.2 0.153 0.159 1151 0.153 148.019 1.639 5.69 2.09 2.18 6.62 7.35 11.180 12.480 1385 63.7 0.165 1449 0.165 148.146 148.272 1.766 1.892 5.83 5.96 2.26 8.09 13.780 1530 68.3 0.171 1598 0.171 148.398 2.018 6.07 2.35 8.85 15.080 1674 72.8 0.176 1747 0.176 148.524 2.144 6.17 2.43 9.62 16.484 1830 77.4 0.182 1907 0.182 148.650 2.270 6.26 2.51 10.40 17.888 1986 82.0 0.187 2068 0.187 148.776 2.396 6.33 2.59 11.20 19.292 2141 86.5 0.192 2228 0.192 148.902 2.522 6.40 2.67 12.00 20.696 2297 91.1 0.197 2388 0.197 149.028 2.648 6.46 2.75 12.81 22.100 2453 95.6 0.202, 2549 0.202 149.154 2.774 6.50 2.83 13.63 23.556 2615 100.2 0.207 2715 0.207 149.281 2.901 6.54 2.90 14.45 25.012 2776 104.7 0.212 2881 0.212 149.407 3.027 6.56 2.98 15.28 25.740 2857 109.3 0.216 2966 0.216 9 149.533 3.153 6.58 3.06 16.11 27.196 3019 113.8 0.221 0.04 3133 0.257 149.659 3.279 6,58 3.13 16.94 28.652 3180 118.4 0.225 0.08 3299 0.306 149.785 3.405 6.58 3.21 17.77 30.030 3333 122.9 0.229 0.11 3456 0.337 149.911 3.531 6.57 3.29 18.59 31.330 3478 127.5 0.233 0.13 3605 0.363 150.037 3.657 6.54 3.36 19.42 32.630 3622 132.0 0.238 0.15 3754 0.386 150.163 3.783 6.51 3.44 20.24 33.930 3766 136.6 0.242 0.17 3903 0.407 150.289 3.909 6.47 3.52 21.06 35.230 3911 141.1 0.246 0.18 4052 0.426 150.416 4.036 6.41 3.60 21.87 36.426 4043 145.7 0.250 0.19 4189 0.444 150.542 4.162 6.35 3.68 22.68 37.518 4164 150.3 0.253 0.21 4315 0.460 150.668 4.288 6.27 3.76+ 23.48 38.610 4286 154.8 0.257 0.22 4441 0.476 150.794 4.414 6.19 3.84 24.26 39.702 4407 159.4 0.261 0.23 4566 0.492 150.920 4.540 6.09 3.92 25.04 40.248 4468 163.9 0.265 0.24 4631 0.506 151.046 4.666 5.98 4.00 25.80 41.340 4589 168.5 0.268 0.25 4757 0.520 151.172 4.792 5.86 4.09 26.54 42.224 4687 173.0 0.272 0.26 4860 0.534 151.298 4.918 5.72 4.18 27:28 43.108 4785 177.6 0.276 0.27 4963 0.547 151.424 5.044 5.57 4.26 27.99 43.992 4883 182.1 0.279 0.28 5065 0.560 151.551 5.171 5.41 4.36 28.68 44.876 4981 186.7 0.283 0.29 5168 0.573 151.677 5.297 5.22 4.45 29.35 45.760 5079 191.2 0.286 0.30 5271 0.5B5 151.803 5.423 5.02 4.55 30.00 46.436 5154 195.8 0.289 0.31 5350 0.597 151.929 5.549 4.79 4.65 30.61 47.112 5229 200.3 0.293 0.32 5430 0.609 152.055 5.675 4.54 4.76 31.20 47.788 5304 204.9 0.296 0.32 5509 0.620 152.181 5,801 .4.26 4.88 31.76 48.464 5380 209.4 0.299 0.33 5589 0.631 152.307, 5.927 3.94 5.00 32.28 49.140 5455 214.0 0.302 0.34 5669 0.642 152.433 6.053 3.58 5.13 32.75 49.426 5486 218.5 0.306 0.35 5705 0.653 152.559 6.179 3.16 5.28 33.18 49.998 5550 223.1 0.309 0.35 5773 0.663 152.686 6.306 2.65 5.46 33.54 50.570 5613 227.7 0.312 0.36 5841 0.674 152.812 6.432 1.98 5.67 33.84 51.142 5677 232.2 0.315 0.37 5909 0.684 152.938 6.558 0.82 6.03 34.03 51.714 5740 236.8 0.318 0.38 5977 0.694 153.064 6.583 6.28 34.04 52.000 5772 237.7 0.321 0.38 6010 0.704 153.190 6,583 6.28 34.04 52.000 5772 237.7 0.324 0.39 6010 0.714 153.659 6.583 6.28 34.04 52.000 5772 237.7 0.335 0.41 6010 0.749 153.786 6.583 6.28 34.04 52.000 5772 237.7 0.338 . 0.42 6010 0.758 153.568 6.583 NA 34.04 52.000 5772 237.7 0.333 0.41 6010 0.742 3057 4785 0.240 10-YEAR TARGET 0.550 100-YEAR TARGE DRAINAGE CALCULATIONS 14-Nov-96 DETENTION PIPE FOR NICHOLAS LANE 11:05 AM DETENTION PIPE SIZE Estimate of required detention storage volume = 2350 cf Assume a det. pipe 84.0 inches, diameter Cross section area = 38.5 sf Usable vol. of Type I CB 6.0 sf/ft = cf Usable vol. of 2.0 Type 11 MH 54.0 inch dia = 222.7 cf Usable vol. of Type II MH 72.0 inch dia = cf Usable vol. of 18.0 inch pipe: ft long = cf Usable vol. of 36.0 inch pipe: 4.0 ft long = 28.3 cf Required pipe volume = 2099.1 cubic feet Required pipe length = 54.5 linear feet Length of pipe used = 55.0 FT. Storage provided = 2367.6 cubic feet Minimum grade elevations: Top D/S detention CB 104.83 with 2.50 ft Overflow clearance Top D/S detention CB 104.00 with 2.0 ft cover Top U/S detention CB 104.33 with 2.0 ft cover Min Gmd surf. elev = 102.83 (over any inlet: 0.5 ft above OF; Inv elev at U/S end .= 95.28 Max water surface elev = 102.33 (detn. pipe sl. = 0.50% ) Invert elevation = 95.00 CALCULATION OF OUTLET SIZE Required release rate, orifice 1 = 0.450 Required release rate, orifice 2 = 0.850 Required release rate, orifice 3 = Storage At elevation: H, ft a, sf d,ft d,inches provd. ---�---- 95.00 7.05 �~ 0.034 --- 0.21 �-2 - 1/2 0 99.40 2.65 0.105 0.37 .4 - 7/16 1546 -0 Full storage = - 2368 --- ------------------------------------ area, a = Qdo / (.62 x (2 x g x h)"'.5) ---- g = 32.2 orifice diameter, d = ( 4/pi x a)''.5 1.5 ---- _- -- - - -- - -- - ----- u, a� m �I m 100-YEAR TARGET �-v c o N N % -C 0.5 C M 10-YEAR TA J�--i-i'/ rn o- - --- -- - - -- 0 500 1000 1500 2000 2500 Detention Volume, cubic feet Max water surface elev = 102.05 (detn. pipe sl. = Total Total I -round pipe -I Hyd I -pa -I wetted Wetted Pipe Strum Dr.1 Or.2 Or.3 Water Surf Depth wetted R Area Area Vol. Vol. rel. rel. rel. -Vol ----Q-- Elev. feet width 0.000 0.000 95.000 1.88 0.54 0.16 0.269 9 4.6 0.061 13 0.061 95.129 0.129 2.63 0.77 0.46 0,808 25 9.2 0.086 34 0.086 95.257 0.257 3.19 0.95 0.83 1.347 46 13.8 0,105 59, 0.105 95.386 0.386 3.65 1.10 1.27 1.886 70 18.4 0.122 88 0A22 95.514 95.643 0.514 0.643 4.04 1.23 1.77 2.425 97 23.0 0.136 120 0.136 95.771 0.771 4.38 1.35 2.31 3.060 127 27.6 0.149 155 191 0.149 0.161 95.900 0.900 4.69 1.47 2.89 3.425 159 193 32.2 36.9 0.161 0.172 230 0.172 96.028 1.028 4.96 1.57 3.51 4.156 4.888 229 41.5 0.182 270 0.182 96.157 1.157 5.20 5.42 1.67 1.77 4.16 4.85 5.619 267 46.1 0.192 313 0.192 96.285 1.285 5.62 1.86 5.56 6.350 306 50.7 0.202 356 0.202 96.414 1.414 5.80 1.95 6.29 7.312 346 55.3 0.210 401 0.210 96.542 1.542 5.97 2.04 7.05 7.793 388 59.9 0.219 447 0.219 96.671 96.799 1.671 1.799 6.12 2.13 7.82 8.755 430 64.5 0.227 495 543 0.227 0.235 ' 96.928 1.928 6.25 2.21 8.62 9.717 474 519 69.1 73.7 0.235 0.243 59 97.056 2.056 6.38 2.29 9.43 10.26 10.679 11.680 564 78.3 . 0.251 0.251 97.185 2.185 2.313 6.49 6.59 2.37 2.45 11.10 12.719 610 82.9 0.258 642 93 0.28 97.313 97.442 2.442 6.67 2.53 11.95 13.239 657 87.5 0.265 0.2 65 97.570 2.570 6.75 2.60 12.81 14.278 705 92.1 0.272 7 849 0 27245 0.278 97.699 2.699 6.81 2.68 13.68 15.317 753 96.7 0.278 902 0.285 97.827 2.827 6.87 2.75 14.56 16.356 801 101.3 0.285 956 0.291 97.956 2.956 6.91 2.83 15.45 17.433 850 106.0 0.291 0.298 1009 0.298 98.084 3.084 6.95 2.90 16.34 18.511 899 948 110.6 115.2 0.304 1063 0.304 98.213 3.213 6.98 2.98 3.05 17.23 18.13 19.050 20.127 997 119.8 0.310 98.341 3.341 6.99 7.00 3.12 19.03 21.205 1047 124.4 0.316 1117 0.310 98.470 98.59B 3.470 3.598 7.00 3.20 19.93 22.225 1096 129.0 0.321 1225 1 98.727 3.727 6.99 3.27 20.83 23.187 1146 133.6 0.327 279 1 0.327 0.3 98.855 3.855 6.96 3.34 21.72 24.149 1195 138.2 0.333 0.338 1387 0.338 98.984• 3.984 6.93 3.42 22.62 24.630 1244 142.8 0.344 14 0.344 99.112 4.112 6.89 3.49 3.57 23.51 24.39 25.592 26.554 1293 1341 147.4 152.0 0.349 1546 0.3 49 99.241 99.369 4.241 4.369 6.84 6.78 3.64 25.26 27.362 1390 156.6 0.354 193 0.54 99.498 4.498 6.71 3.72 26.13 28.171 1437 161.2 0.359 0.16 1598 1650 0.523 23 0.613 99.626 4.626 6.63 3.60 26.99 28.979 1484 165.8 0.365 0.370 0.25 0.31 1701 0.681 99.755, 4.755 6.53 3.87 27.83 29.383 30.191 1531 1577 170.5 175.1 0.375 0.35 1752 0.738 99.883 4.883 6.43 6.31 3.95 4.03 28.67 29.49 30.922 1622 179.7 0.379 0.41 1801 0.788 100.012 5.012 5.140 6.18 4.12 30.29 31.577 1666 184.3 0.384 0.45 1850 0.834 100.140 100.269 5.269 6.04 4.20 31.07 32.231 1709 188.9 0.389 0.49 1898 1945 0.876 0.915 100.397 5.397 5.88 4.29 31.84 32.885 1751 193.5 0.394 0.52 0.55 1990 0.952 100.526 5.526 5.71 4.38 32.59 33.212 1792 198.1 0.398 0.403 0.58 2035 0.988 100.654, 5.654 5.52 4.47 33.31 33.866 1832 202.7 0.408 0.61 2077 1.022 100.783 5.783 5.31 4.56 - 34.00 34.367 34.867 1870 1907 207.3 211.9 0.412 0.64 2119 1.054 100.911 5.911 5.07 4.82 4.66 4.77 34.67 35.31 35.367 1942 216.5 0.417 0.67 2158 1.085 101.040 6.040 6.168 4.53 4.88 35.91 35.868 1975 221.1 0.421 0.69 2196 1.115 101.168 6.297 4.21 4.99 36.47 36.118 2006 225.7 0.425 0.72 2232 1.144 101.297 101.425 6.425 3.84 5.12 36.99 36.580 2034 230.3 0.430 0.74 2265 1.173 101,554 6.554 3.42 5.26 37.45 37.003 2060 234.9 0.434 0.77 2295 1.200 1011.682 6.682 2.91 5.42 37.86 37.426 2082 239.6 0.438 0.79 2322 1227 1.253 101.811 6.811 2.27 5.62 38.20 37.850 2101 244.2 0.442 0.81 2345 2363 1.279 101.939 6.939 1.30 5.91 38.43 38.273 2114 248.8 0.446 0.83 2368 1.303 102.068 7.000 6.28 38.48 38.485 2117 250.9 0.451 0.453 0.85 0.86 2368 1.315 102.131 7.000 6.28 38.48 38.48 •38.485 38.485 2117 2117 250.9 250.9 0.459 0.89 2368 1.352 102.325 7.000 NA 1508 0.35010-YEAR 1823 0.820100-YEA /ell TALSC PARK gg I I Y • / •e /Ji I % i /ZDNM4• �' - �J L-.'-� •'r ,// /' //� � � ! n,.' f i �r�- � u ee• ss• ar• a rra.21' lo• sw. / ' ° 1L T-1 as NICHOLAS% LANE /(vwlvnra' w•o�'' _ - .�;�ec / '•! /-IL.�...u- I 'Z•1^-07 � ___ 1ST / /•h,• .' ,,' i ;J• -� � ,H. 4 A _"a' _-�•. J, P� !^1 i� � o an A ,.14� �•... .% Ii NI 0 U N f U A KE R s E: A U K t A T r� \ /1I%. ''/.;1''::A ,• /,J� ..'8' y'.'y�g�`.,y,!.�({`/ i. '•/\ c 1" p c I P p /•iy' .'R%'D.;l/ �/ �`_K`_.. .,.7,.'�•,i GI '6 \\ 1°r I ' .(1 � I � s � �'+ I i- r' e IY9 TH PL. S.W. — Al CD o / -J dl,' ••N : �� ;4g �Ed�'�y�3� � "F�...2�-• � ^€�i•i C 1 s F 'TALBb'f i'AF{6< @fi�,dszu�c�sFai°� :isc;aisa i3'Fs� r ey fi/ 11 .`6. �. � /•1 � eec.l.s.. � 6+ :'.:G:'.'. .'. ".'�:: w:� e �1 11./� .. l'• �/ �� � I � eec•.o.. e � a.•. '/. •''Vi'�,.'r' /.L•' Pa •••1. � 'C =wZain: : w9i _i n: nS' A_� ' I q9 ., 1 I i I! rl. �j.�L* �_._l � I ejtl i � • �_q/�� •U � I .v i .�' ;_ •'�': A L APPENDIX A -- BASIN STUDY To establish the capacity needs of the upstream system, a basin study was conducted. This included field collection of land use data and drainage system location, and modeling of the basin to determine likely peak rates of flow. The results of this are presented below in the section titled "Drainage Basin Study." c In order to establish the true capacity of the system, it was necessary to collect field survey data for the tops and inverts of the actual pipe system at the junction points below the project. The following table and the attached topography portion shows the survey data for the system. nnwnctrPnm System Data Node Identifier: OF 1 21 3 4 Top elev. 22 22.29 62.541 90.8 117 assumed Invert elev. 14.22. 1 b.29 35.17 83.24 105 assumed Pipe length 45 80 140 168 Pipe diameter 24 24 24 24 Pipe sloe 4.60% 23.60%1 134.34%112.95% TRIBUTARY DRAINAGE BASIN STUDY The basin draining through the subject pipe system is about 155. acres, based on a field investigation by C, Campbell on November 14, 1995. With only a few exceptions, the basin is bounded by 84th Ave W. to the east, 192nd Street SW to the south, 88th Avenue W. to the west and Olympic View drive to the north. The basin is, or will be, all single family housing at an approximate average density of 2 homes per acre. The only identified area with greater impervious cover is the elementary school at 86th Street and 188th Ave. For the purpose of this study, it was assumed that larger lots were developed at a density comparable to the surrounding developments Pervious .areas within the basin are either lawns with mature landscape trees, or in a few cases, wooded areas on relatively steep terrain. The runoff character was assumed to be lawn with approximately 15 percent tree and shrub cover equivalent to second growth forest. The drainage collection system was simplified to two main stems, one on 88th Avenue W. and one on Olympic View Drive. Each of these had a number of laterals from sub -basin areas. Except where more detailed information was available from plans, pipe slopes were based on the surface elevations indicated on 1"=200' aerial mapping. Pipe inverts were assumed to be 3 feet below the surface. Lovell-Sauerland and Associates Appendix A Page A-1 The basin was divided into subbasin areas ranging from 3 to 13 acres in size. Detention systems were assumed in the more recently developed areas, based on 1000 cf of storage per acre, and having a release rate based on forest using the rational method. A table showing these assumptions is attached, titled "Basin Runoff Estimation Assumptions." Also attached is the SCS Soils survey map for the area, and a map-worksheet showing the locations of each of the sub -basins. This information was all incorporated into a computer model using "Hydra" software. The model utilizes the SCS-SBUH method, and was used for the 24-hour, 100-year and 25-year storms. If the upstream basin produces a higher rate of runoff than can be carried by the downstream system, then detention will be provided as required by city code. The input and results of this modeling follow: HYDRA OUTPUT Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington Page C:\4\2926SCS.CMD 10:26 8-Apr-96 CFS Vista Del Mar Basin Analysis *** point Analysis of Existing Pipes Link Long Slope Invert .San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel $Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 1 10 0.1000 342.00 0.0 2.8 2.77 12.11 345.00 344.00 dummy pipe 12 341.00 0.0 0.0 3.53 22.91 460.07 459.73 0.37-115.07-115.73 ---------------------------------------------------- Lateral length= 10 Upstream length= 10 ---------------------------------------------------- Lateral length= 0 Upstream length 0 *** point Reservoir Invert -------------- Maximum Flow Values ----------------- Link Up/Dn/Ovr San Inf Sto Mis Design 3 341.00 Incoming 0.00 0:00 2.77 0.00 2.77 340.00 Discharge 0.00 0.00 2.64 0.00 2.64 353.00 Overflow 0.00 0.00 0.00 0.00 0.00 Stored 0 0 2511 0 2511 *** point Link Long Slope Invert San Sto Qdes Diam Up/Dn Inf Mis Vel d/D Lovell-Sauerland and Associates Appendix A Cost Exfil 0 0 Analysis of Existing Pipes Qmax GrUp GrDn SrCh/Dlt %Cap HGLUp HGLDn Parallel QRem DiffUp DiffDn Replace Page A-2 4 150 0.0867 340.00 0.0 2.6 2.64 11.27 343.00 330.00 DUMMY PIPE 12 327.00 0.0 0.0 3.36 23.43 459.73 458.76 0.37-116.73-128.76 ---------------------------------------------------- Lateral length= . 160 Upstream length= 160 -------- 7------------------------------------------- Lateral length= 0 Upstream length= 0 *** TER MAR Reservoir Invert Maximum Flow Values ----------------- Cost Link Up/Dn/Ovr San Inf Sto Mis Design Exfil 6 341.00 Incoming 0.00 0.00 2.77 0.00 2.77 0 346.00 Discharge 0.00 0.00 2.77 0.00 2.77 Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington Page C:\4\2926SCS.CMD 10:26 8-Apr-96 CFS Vista Del Mar Basin Analysis 353.00 Overflow : 0.00 0.00 0.00 0.00 0.00 Stored : 0 0 3024 0 3024 0 *** TER MAR Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 7 150 0.0867 340.00 0.0 2.8 2.77 11.27 343.00 330.00 DUMMY PIPE 12 327.00 0.0 0.0 3.53 24.59 459.82 458.76 0.38-116.82-128.76 ---------------------------------------------------- Lateral length= 150 Upstream length= 150 *** North 84th Ave W. Link Long Slope Invert San Diam Up/Dn Inf 8 400 0.0875 382.00 0.0 PIPE 1 1 12 347.00 0.0 *** North 84th Ave W. Sto Qdes Qma Mis Vel %Ca d/D QRe 1.7 1.70 11.3 0.0 2.16 14.98 0.29 Analysis of Existing Pipes x GrUp GrDn SrCh/Dlt p HGLUp HGLDn Parallel m DiffUp DiffDn Replace 3 385.00 350.00 459.64 458.76 -74.64-108.76 Shape Invert Surf FreBrd Width San Sto Link Long L/C/R Up/Dn Up/Dn Up/Dn Depth Inf Mis 9 800 3.000 347.00 347.35 2.6 4.11 0.00 3.37 Lovell-Sauerland and Associates Appendix A Channel Flow Estimated Vel Cost 3.37 0 Page A-3 Swale to bas 2.00 327.00 327.35 2.6 0..35 0.00 0.00 3.15 3.000 Slope = 0.0250 Froude Number = 1.09 *** North 84th Ave W. Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 10 600 0.1333 327.00 0.0 7.0 7.02 13.98 330.00 250.00 PIPE 2 12 247.00 0.0 0.0 8.94 50.21 458.76 437.21 0.56-128.76-187.21 ---------------------------------------------------- Lateral length= 1800 Upstream length= 2110 Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington . ---------------Page----- C:\9\2926SCS.CMD 10:26 8-Apr-96 CFS Vista Del Mar Basin Analysis *** Seaview Heights Basin Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 11 200 0.0600 377.00 0.0 6.8 6.79 9.38 380.00 368.00 PIPE 3 12 365.00 0.0 0.0 8.64 72.33 775.58 767.69 0.71-395.58-399.69 12 450 0.0333 365.00 0.0 8.3 8.31 6.99 368.00 356.00 PIPE 4 12 350.00 0.0 0.0 10.58 118.85 767.69 745.48 8 0.90 1.32-399.69-389.48 15 --------------------------- p g - Lateral length= 650 Upstream len th- 650 *** Helleren Lane 1 Analysis of Existing Pipes Link Long Slope Invert San S.to Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 13 450 0.0756 394.00 0.0 4.1 4.05 10.53 397.00 375.00 PIPE 5A 12 360.00 0.'0 0.0 5.16 38.51 698.87 693.31 0.49-301.87-318.31 ---------------------------------------------------- Lateral length= 450 Upstream length= 450 ---------------------------------------------------- Lateral length= 0 Upstream length= 0 Lovell-Sauerland and Associates Appendix A Page A-4 *** Helleren Lane 2 Reservoir Invert -------------- Maximum Flow Values --------------- Cost Link Up/Dn/Ovr San Inf Sto Mis Design Exfil 15 370.60 Incoming 0.00 0.00 3.82 0.00 3.82 0 360.00 Discharge 0.00 0.00, 3.27 0.00 3.27 370.00 Overflow 0.00 0.00 0.00 0.00 0.00 Stored 0 0 '2565 0 2565 0 *** Helleren Lane 2 Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax. GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington Page 4 C:\4\2926SCS.CMD 10:26 8-Apr-96 CFS Vista Del Mar Basin Analysis 16 700 0.0214 360.00 0.0 7.3 7.32 5.61 375.00 350.00 ***/*** PIPE 5 12 345.00 0.0 0.0 9.32 130.56 693.31 666.45 8 0.90 1.71-318.31-316.45 15 ---------------------------------------------------- Lateral length= 700 Upstream length= 1150 *** Olympic View Drive Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf, Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn, Replace 17 350 0.0257 262.00 0.0 2.2 2.18 6.14 265.00 256.00 PIPE 8 12 253.00 0.0 0.0 2.77 35.44 442.04 440.75 0.46-177.'04-184.75 18 270 0.0259 253.00 0.0 4.1 4.10 6.17 256.00 249.00 PIPE 9 12 246.00 0.0 0.0 5.22 66.42 440.75 437.21 0.67-184.75-188.21 19 370 0.0270 246.00 0.0 12.9 12.94 6.30 249.00 239.00, PIPE 10 12 236.00 0.0 0.0 16.47-205.46 437.21 389.79 15 0.90 6.64-188.21-150.79 18 20 250 0.0240 236.00 0.0 14.9 14.92 5.93 239.00 233.00 PIPE 11 12 230.00 0.0 0.0 18.99 251.42 389.79 348.43 15 0.90 8.98-150.79-115.43 18 21 230 0.0261 230.00 0.0 16.7 16.68 6.19 233.00 227.00 ***/*** PIPE 12 12 224.00 0.0 0.0 21.24 269.68 348.43 300.77 15 0.90 10.50-115.43 -73.77 18 ---------------------------------------------------- Lovell-Sauerland and Associates , Appendix A - Page A-5 Lateral length= 1470 Upstream length= 3580 ---------------------------------------------------- Lateral length= 0 Upstream length= 0 *** HALO HAVEN Reservoir Invert Maximum Flow Values ----------------- Cost Link Up/Dn/Ovr San Inf Sto Mis Design Exfil 23 368.00 Incoming 0.00 0.00 3.54 0.00 3.54 0 367.00 Discharge 0.00 0.00 3.17 0.00 3.17 378.00 Overflow 0.00 0.00 0.00 0.00 0.00 Stored 0 0 4133 0 4133 0 Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington ' Page 10:26 8-Apr-96 C:\4\2926SCS.CMD CFS Vista Del Mar Basin Analysis *** HALO HAVEN Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt .Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 24 150 0.0267 367.00 0.0 3.2 3.17 6.25 370.00 366.00 DUMMY PIPE 12 363.00 0.0 0.0 4.03 50.62 780.59 779.21 0.57 410.59-413.21 ---------------------------------------------------- Lateral length= 150 Upstream length= 150 ----------------------------- ---------------------- Lateral length= 0 Upstream length= 0 *** SEAWOOD Reservoir Invert -------------- Maximum Flow Values ----------------- Link Up/Dn/Ovr San Inf Sto Mis Design 26 344.00 Incoming 0.00 0.00 2.63 0.00 2.63 343.00 Discharge 0.00 0.00 2.63 0.00 2.63' 354.00 Overflow 0.00 0.00 0.00 0.00 0.00 Stored 0 0 2632 0 2632 *** SEAWOOD Link Long Slope Invert San Sto Qdes Qma Diam Up/Dn Inf Mis Vel %Ca d/D QRe 27 150 0.0467 347.00 0.0 2.6 2.63 15.0 PIPE 18 15 340.00 0.0 0.0 2.15 17.5 Cost Exfil 0 0 Analysis of Existing Pipes x GrUp GrDn SrCh/Dlt p HGLUp HGLDn Parallel m DiffUp DiffDn Replace 0 350.'00 343.00 7 581.64 581.32 . Lovell-Sauerland and Associates Appendix A Page A-6 0.32-231.64-238.32 ---------------------------------------------------- Lateral length=. 150 Upstream length= 150 *** 88TH Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 28 400 0.0200 371.00 0.0' 1.8 1.81 5.42 374.00 366.00 PIPE 13 12 363.00 0.0 0.0 2.30 33.34 780.20 779.21 0.45 406.20-413.21 Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington ----Page----- C:\4\2926SCS.CMD 10:26 8-Apr-96 CFS Vista Del Mar Basin Analysis *** 88TH Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel 29 900 0.0111 363.00 PIPE 14 12 353.00 30 230 0.0087 353.00 PIPE 15 12 351.00 31 230 0.0130 351.00 PIPE 16 15 348.00 32 375 0.0213 348.00 PIPE 17 15 340.00 33 500 0.0360 340.00 PIPE 18 15 322.00 34 450 0.0489 322.00 PIPE 19 18 300.00 35 650 0.1169 300.00 PIPE 20 18 224.00 d/D QRem . DiffUp DiffDn Replace 0.0 7.3 7.27 4.04 366.00 356.00 0.0 0.0 9.26 180.10 779.21 745.48 12 0.90 3.23-413.21-389.48 15 0.0 17.9 17.90 3.57 356.00 354.00 0.0 0.0 22.79 501.11 745.48 684.83 21 ,0.90 14.32-389.48-330.83 2.4 0.0 20.6 20.61. 7.93 354.00 351.00 0.0 0.0 16.80 259.94 684.83 666.45 18 0.90 12:68-330.83-315.45 24 0.0 30.6 30.65 10.14 351.00 343.00 ***/*** 0.0 0.0 24.98 302.19 666.45 581.32 21 0.90 20.51-315.45-238.32 24 0.0 33.7 33.73 13.18 343.00 325.00 0.0 0.0 27.48 255.99 581.32 448.18 18 0.90 20.55-238.32-123.18 24 0.0 37.6 37.57 24.97 325.00 303.00 ***/*** 0.0 0.0 21.26 150.47 448.18 400.56 15 0.90 12.60-123.18 -97.56 21 0.0 43.1 43.13 38.61 303.00 227.00 0.0 0.0 24.40 111.68 400.56 300.77 10 0.90 4.51 -97.56 -73.77 21 Lovell-Sauerland and Associates Appendix A Page A-7 0 36 240 0.0917 224.00 PIPE 21 18 202.00 37 450 0.0222 202.00 PIPE 22 24 192.00 0.0 59.8 59.81 34.19 0.0 0.0 33.84 174.92 0.90 25.62 0.0 61.4 61.37 36.26 0.0 0.0 19.54 169.27 0.90 25.12 227.00 205.00 ***/*** 300.77 213.20 18 -73.77 -8.20 24 205.00 195.00 ***/*** 213.20 194.00 21 -8.20 1.00 30 *** 88TH Channel Shape Invert Surf FreBrd Width San Sto Flow Estimated Link Long L/C/R Up/Dn Up/Dn Up/Dn Depth Inf Mis Vel Cost Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington Page 7 C:\4\2926SCS.CMD 10:26 8-Apr-96 CFS Vista Del Mar Basin Analysis 38 500 3.000 192.00 193.08 1.9 8.46 0.00 63.53 63.53 0 Swale to bas 2.00 145.00 146.08 3.9 1.08 0.00 0.00 11.30 3.000 Slope = 0.0940 Froude Number = 2.44 *** 88TH Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 39 350 0.1143 145.00 0.0 63.5 63.53 82.22 150.00 115.00 PIPE 23 24 105.00 0.0 0.0 20.22 77.26 168.58 123.74 0.74 -18.58 -8.74 40 170 0.1280 105.00 0.0 65.6 65.63 87.02 115.00 90.80 PIPE 24 24 83.24 0.0 0.0 20.89 75.42 123.74 101.47 0.73 -8.74 -10.67 -------------------- -------------------------------- Lateral length= 5445 Upstream length= 11125 ---------------------------------------------------- Lateral length= 0 Upstream length= 0 HYDRA INPUT FILE JOB Vista Del Mar Basin Analysis DPD .012 20 3 2 3 .005 2.24 EPD .012 2 .9 0 CHD 10 1 .03 3 2 3 1 2 1 1 .01 UNP 0.03 .15 0.25 0.10 .02 2 .02 2 .2 30 480 .1 2 4 48 TOT 3.0 Lovell-Sauerland and Associates Appendix A Page A-8 REM Type lA 24-hour storm at 10 minute interval per KCSWDM HYE, 10 + 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 + 0.0040 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0060 0.0060 + 0.0060 0.0060 0.0060 0.0060 0.0070 0.0070 0.0070 0.0070 0.0070 + 0.0070 0.0082 0.0082 0.0682 0.0082 0.0082 0.0082 0.0095 0.0095 + 0.0095 0.0095 0.0095 0.0095 0.0134 0.0134 0.0134 0.0180 0.0180 + 0.0340 0.0540 0.0270 0.0180 0.0134 0.0134 0.0134 0.0088 0.0088 + 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 0.0088 + 0.0088 0.0072 0.0072 0.0072 0.0072 0.0072 0.0072 0.0072 0.0072 + 0.0072 0.0072 0.0072 0.0072 0.0057 0.0057 0.0057 0.0057 0.0057 + 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0050 0.0050 + 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 + 0.0050 0.0040 0.6040 0.0040.0.0040 0.0040 0.0040 0.0040 0.0040 + 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040.+ 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 + 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 + 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 REM --- Continuous rainfall simulation criteria --- PAV 0.020 .05 .02 .1 .15 15 0.003 NEW point REM HYD 5.22 150 .07 .325 10 [Sub -basin 121 OLF 150 .07 1.3 .03 SCS 5.22 .325 98 85.3 19 .1 500 15 [Sub -basin 121 epi 10 345 344 342 341 12 [dummy pipe] RED (0/0 2500/1 2700/3 6000/5) RES 341 340 353 OVER11 REC OVER11 EPI 150 343 330 340 327 12 [DUMMY PIPE] HOL PP NEW TER MAR REM HYD 6.2 300 .03 .143 15 LSub-basin 11B] OLF 150 .03 1.3 .03 SCS 6.2 .143 98 85.3 18 .04 300 [Sub -basin 11B] RED (0/0 3100/1.24 3200/3 6000/5). RES 341 340 353 OVER12 REC OVER12 EPI 150 343 330 340 327 12 [DUMMY PIPE] HOL TM NEW North 84th Ave W. REM HYD 3.1 . 100 .02 .461 15 [Sub -basin 61 OLF 100 .02 1.3 .03 SCS 3.1 .461 98 85.3 20 .03 500 15 [Sub -basin 61 EPI 400 385 350 382 347 12 [PIPE 11 REM HYD `6.2 300 .03 .143 15 [Sub -basin 11A] OLF 300 .03 1.3 .03 SCS 6.2 .143 98 85 18 .04 500 20 [Sub -basin 11A] CHA 800 350 330 347 327 [Swale to basin 171 REC TM REC PP EPI 600 330 250 327 247 12 [PIPE 2] HOL 84TH Lovell-Sauerland and Associates Appendix A Page A-9 REM-------------------- NEW Seaview Heights Basin REM HYD 20.14 300 .02 .283 20 [Sub -basin 3] OLF 300 .02.1.3 .03 SCS 20.14 .283 98 85.3 8 .015 1200 10 [Sub -basin 3] -- WARNING - Parameter 7 normally not greater than 500.00 EPI 200 380 368 377 365 12 [PIPE 31 REM HYD 4.66 150 .03 .263 10 [Sub -basin 4] OLF 150 .03 1.3 .03 SCS 4.66 .263 98 85.3 19 .02 500 15 [Sub -basin 41 EPI 450,368 356 365 350 12 [PIPE 4]` HOL SEAVIEW REM------------------------------------------------------- NEW Helleren Lane 1 REM HYD 7.46 200 .025 .479 10 [Sub -basin 7A] OLF.200 .025 1.3 .03 SCS 7.46 .479 98 85.3 19 .05 450 15 [Sub -basin 7A] EPI 450 397 375 394 360 12. [PIPE 5A] HOL HELL NEW Helleren Lane 2 REM HYD 7.46 200 .025 OLF 200 :025 1.3 .03 SCS 7.46 .383 98 85.3 RED (0/0 2000/.8 2100/3 RES 370 360 370 OVER13 REC OVER13 REC .HELL EPI 700 375 350 360 345 .383 10 [Sub -basin 7B] 19 .05 450 15 [Sub -basin 7B] 6000/5) 12 [PIPE 51 HOL HELLEREN REM ------------------- -------------------------------------- NEW Olympic View Drive REM HYD 6.43 300 .07 .178 10 [Sub -basin 15] OLF 300 .07 1.3 .03 SCS 6.43 .178 98 85.3 4 .05 1000 20 [Sub -basin 151 ^-- WARNING - Parameter 7 normally not greater than 500.00 EPI 350 265 256 262 253 12 [PIPE 81 REM HYD 5.17 150 .1 .152 5 [Sub -basin 16] OLF 150 .1 1.3 .03 SCS 5.17 .152 98 85.3 5 .15 450 10 [Sub -basin 16] EPI 270 256 249 253 246 12 [PIPE 9] REC 84TH REM HYD 4.82 150 .1 .27 10 [Sub -basin 17) OLF 150 .1 1.3 .03 SCS 4.82 .27 98 85.3 20 .08 400 10 [Sub -basin 17] EPI 370 249 239 246 236 12 [PIPE 10] REM HYD 4.1 150 .1 .268 10 [Sub -basin 18) OLF 150'.1 1.3 .03 SCS 4.1 .268 98 85.3 20 .08 350 15 [Sub -basin 18) EPI 250 239 233 236 230 12 [PIPE 111 REM HYD • 3.73 150 .1 .235 10 [.Sub -basin 19) OLF 150 .1 1.3 .03 SCS 3.73 .235 98 85.3 20 .08 350 15 [Sub -basin 19) Lovell-Sauerland and Associates Appendix A . Page A-10 EPI 230 233 227 230 224 . 12 [PIPE 121 HOL OVD REM ------------ ------------------------------------------ NEW HALO HAVEN REM HYD 8.03 300 .02 .345 10 [Sub -basin 2B] OLF 300 .02 1.3 .03 SCS 8.03 .345 98 85.3 7 .04 500.15 [Sub -basin 2B] RED (0/0 4000/1.6 4100/3 6000/5) RES 368 367 378 OVER14 REC OVER14 EPI 150 370 366 367 363 12 [DUMMY PIPE] HOL HH NEW SEAWOOD REM HYD 5.51 150 .03 .277 10 [Sub -basin 10B] OLF 150 .01 1.3 .03 SCS 5.51 .277 98 85.3 19 .02 150 10 [Sub -basin 10B] RED (0/0 2700/1.1 2800/3 6000/5) RES 344 343 354 OVER15 REC OVER15 EPI 150 350 343 347 340 15 [PIPE 181 HOL SW NEW 88TH REM HYD 3.73 300 .02 .386. 10 [Sub -basin 1] OLF 300 .02 1.3 .03 SCS 3.73 .386 98 85.3 7 .05 200 15 [Sub -basin 1] EPI 400 374 366 371 363 12 [PIPE 131 REM HYD 4.82 300 .02 .51 10 [Sub -basin 2A] OLF 300 .02 1.3 .03 SCS 4.82 .51 98 85.3 7 .04 500 15 [Sub -basin 2A] REC HH EPI 900 366 356 363 353 12 [PIPE 141 REM HYD 6.46 300 .04 .21' 10 [Sub -basin 5] OLF 300 .04 1.3 .03 SCS 6.46 .21 98 85.3 7 .02 200 15 [Sub -basin 5] • REC SEAVIEW EPI.230 356 354 353 351 12 [PIPE 151 REM HYD 5.97 300 .06 .258 10 [Sub -basin 8] OLF 300 .06 1.3 .03 SCS 5.97 .258 98 85.3 19 .005 350 15 [Sub -basin 8] EPI 230 354 351 351 348 15 [PIPE 161 REC HELLEREN REM HYD 6.46 200 .01 .238 10 [Sub -basin 91 OLF 200 .01 1.3 .03 SCS 6.46 .238 98 85.3 19 .005 400 15 [Sub -basin 9] EPI 375 351 343 348 340 15 [PIPE 17] REM HYD 5.02 150 .03 .394 10 [Sub -basin 10A] OLF 150 .01 1.3 .03 f SCS 5.02 .394 98 85.3 19 .02 800 15 [Sub -basin 10A] ^-- WARNING - Parameter 7 normally not greater than 500.00 REC SW EPI 500 343 325 340 322 15 [PIPE 181 REM HYD 8.84 300 .03 .347 10 [Sub -basin 13) OLF 300 .03 1.3 .03 SCS 8.84 .347 98 85.3 7. .02 500 15 [Sub -basin 13] Lovell-Sauedand and Associates Appendix A Page A-11 EPI 450 325 303 322 300 18 [PIPE 191 REM HYD 11.94 150 .01 .26 10 [Sub -basin 141 OLF 150 Al 1.3 .03 SCS 11.94 .26 98 85.3 19 .05 500 15 [Sub -basin 14) EPI 650 303 227 300 224 18 [PIPE 201 REC OVD EPI 240 227 205 224 202 18 [PIPE 21) REM HYD 3.1 150 .1 .343 10 [Sub -basin 20] OLF 150 .1 1.3 .03 SCS 3.1 .343 98 85.3 15 .12 300 15 [Sub -basin 201 EPI 450 205 195 202 192 24 [PIPE 221 REM HYD 4.36 150 .1 .298 10 [Sub -basin 21] OLF 150 .1 1.3 .03 SCS 4.36 .298 98 85.3 15 .2 500 15 [Sub -basin 21) CHA 500 195 150 192 145 (Swale to basin 21) ^-- WARNING - Maximum design velocity violated EPI 350 150 115 145 105 24 [PIPE 231 P REM HYD 4.42 150 .1 .231 10 [Sub -basin 22] OLF 150 .1 1.3 .03 SCS 4.42 .231 98 85.3 19 .01 300 15 [Sub -basin 22] REM BEGIN ACTUAL PIPE DIMENSIONS EPI 170 115 90.80 105 83.24 24 [PIPE 241 hol basin END This HYDRA output table (following) shows the maximum flow the lower pipe system can handle without spilling from the upstream catchbasin. Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington - Page 1 C:\4\2926PIPE.CMD 10:42 21-Nov-95 . CFS Vista Del Mar Downstream Pipe Capacity Analysis *** downstream Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn. Replace 1 170 0.1280 105.00 0.0 0.0 55.00 87.02 115.00 90.80 PIPE 24 24 83.24 0.0 55.0 25.66 63.21 106.29 84.53 0.65 8.71 6.27 2 140 0.3434 83.24 0.0 0.0 55.00 142.52 90.80 62.54 PIPE 25 24 35.17 0.0 55.0 36.12 38.59 84.21 36.14 0.49 6.59 26.40 3 80 0.2360 35.17 0.0 0.0 55.00 118.16 62.54 22.29 PIPE 26 24 16.29 0.0 55.0 31.66 46.55 36.25 17.37 0.54 26.29 4.92 4 40 0.0518 16.29 0.0 0.0 55.00 55.33 22.29 22.00 PIPE 27 24 14.22 0.0 55.0 18.46 99.40 18.08 16.01 0.89 4.21 5.99 ---------------------------------------------------- Lateral length= 430 Upstream length= 430 Lovell-Sauerland and Associates Appendix A Page A-12 Even ,at a maximum capacity of 55 cfs, the last pipe is still undersized for the 100-year peak runoff of 65.63 cfs. Therefore, the Vista Del Mar project will require detention to comply with city code. The detention will not eliminate the potential flooding, but will mitigate any possible impact by the Vista Del Mar development. In summary, given the apparent lack of downstream pipe capacity, the project will need to provide detention for the plat because: 1. The entire upstream basin produces a calculated runoff greater than the capacity of that pipe, and 2. Even though the pipe network feeding that pipe is of a lower capacity, it cannot be guaranteed on paper that the combination of pipe and gutter flow would not deliver enough water to overflow it. It also cannot be guaranteed that the City won't correct the existing upstream capacity deficiencies. 3. The potential flooding of the BNRR property is an existing situation which may occur, with or without the plat. Construction of the plat will likely result in a small incremental increase in the probable maximum flow. 4. Construction of a detention system for the plat will not eliminate this problem. It will only mitigate the new plat's share of the problem, and "prove" that the plat is not a contributor to future .flooding. Since there is a potential downstream problem, which the plat may aggravate, the letter of the code must be fulfilled to limit future liability. Lovell-Sauerland and Associates Appendix A Page A-13 :J4 -s c tL " NJ -x ti cc CX. a mi kf) LL. qu qU .22. ON\ 0 3 m <O Olp0"�.o°�yncc D �Z a s m �oo$a'm°cv-4 0 D z r vTmoa�� C m mm mK' n ��°• off°• n. m�aom (osoN 3 -i 0 m�o n 2•3 o�� m O m n a 'd o c: o gad '� u� is rn y ,y O o m ID n c w � m m N w � cr w a O 0) 0 0 0 0 0 3 � 0 0 O N N 0 W N N N J J O N O O0) O41 � W 00 D1 OW(n O0 WJ 0 00 (n 0)0 O) to 0N N - _ ) N U) a W i A to O 0 t0 C: A C33O -� co Ut 0A O p N O O N (n 00 W J N D N (n N 10 N p N N O !D 10 O W A N O O01NO0 C"0 W y i NN0 NO y NW, N(NIr OA ? 0 N A (n 0 0) A p w N O O ry 0 0 (n J 0 A OON W 0OO 0) W 00 (n (n O 0 0 (n (n W (G O N W O 0 _C.,�; O O A W W W N (gyp 00 N (7 O � O O N OWi t O O> toO En N W - co N O p O (0 A O W o o OD G) N -+ (^p (n 0 N O O N O W N O O J W N In • f0 N C W N W A O W C,O 00 N �p N NO O OJ(nO0 JW Of O O N J O A N 0 O in F. W t0 ((D co N O N O O W J V D m 0 N N (O N0 N + J W A ao O N O m Vt p p N O (D 00000 0) A A J U3 CD M N p f C W 6) W p W N _ AO W O O ca p _ N O N N O T O (O 01 00 0 �- w (O O p N N Of P Ql J p y O T (0 w A 0 O W N 0 W 0) O A N O O O) N /0 N O (n N 0 01 . to O N U J a' W O N N J OA(WnOO OON D N O w N O O N OWi W O .+Oyi N V• -p' p pp J 0 0 N O y OA(nO0 O)A O QJ C, 0 O0 W N N a W �o D w N =0 O �O-. N W W Of .r v�3 v Dm 3 ooTg:4 mm N N m fD '° m, ofDi ? - .5@Sn�� m I (n 3 � Zmyo.c�(�O �5 M' �� D y�.�yc 0�o.�(0 `°• oavMa.00 3 N 9 J (p 0 dd Z (n 0 W V! N p 3 ry N N W N N 5 � N w o` a a w N 0. Z 3 Z w CDZ• n; y m 0 )o < Z o ul r W 2 D o m ° ?• w a � c c w w (00W 00 p J0 M J O) 0)Z W OD 0o N CO N 0 W 10 v J O O N W N O)�a NN o A W (O O O WJ N O -40 WO j C" IV N - ODca ' 10 O f0 N 0 0) WJ N N A O O O Cl)J m 0 N NO D . N 03 (A e W J C. N J O u• Vt W N O W O (% N //�z6 V� 01 W N J . O) A OW0 mNJ POPP- OON Ut n `''TSO 0A OLW0U(n N Itovc._ N CD W o W w w W O OJ P 0 o W A j O N m N W 0. N 0 W W � O W (n :.. c 0 W O W O C, O) O O J W G) p (n A O) — co N (a to (O N P. W N W O O a w W y tJ O J W 88 0 (n �n o ao J N o ..L-i o N W (O A O W D ��•• _ vl W 0u W N W A A Ut ONO w (te(nn A wOAD N O ONi J v 0) N N OD V1 N A O0 O W D1 J O N co . W V• OD A W WO. W�jr'r'i I V�L'�V / o W tDN A O (A N > W (0 — w W (O O N 4 W W QD 01 r O 5Z�Q LZ%) 7" I , AjD (n p o co !J 0 W O A O O co N 0 N O D N + OD W N � pp V N fn O i0 jD fn N Se Oo CJ W O f0 O N O W A N EU I}C201 no A N W 0 Wo J O CO W O N N W W O _ _ o J J rn N O 0 0 .90 [..) � N O A W � - 1 <_ a n `.• y -a cra S.�-.,r' ;. r� ."' 't � ,.;w °...U. �p a .s. i��r Y Y J a •^. i a f'�„^'"is' at� Y � � i. �d1•r►� a .�•.� r -�„ �' 4 aj r - y� y a,� �;- p r,p� "-f� 9_ � r _ `�,s� {y�. e.(. t'r" Y 4 � :i- Y .,tee• >_' y !' 'y f _ "r{` F /�%R (�/�{j �/Y Yr L� �'\\YY� jar r._ 3j 19 7. 1.5 -51 �'j M d .. E• sL ys•.a •f.V } 5 �.:� �� 82 W . 'P^T A ��a a�`� Np�• 50 a-�, v < �v 6.5'_ i N��a v i i l e J I r {s Perrin . _ C M / •�l° 3 � � � r .`, '6'.td .;,. "` r,'• �.. a tr .,5• w �: :R"A S - ,- •._ Yam.. _ N.a;:a:,r f ! - . ��yE� 'r3 a Aew R ♦ l: �„n.° k � Z.� '"• .a � R ,b. f� •a.. A • •M ti. n = ` (:✓. `c .. �i1- e, s''..,,` t �t ��m •, •.i � s r iE - �':. 5'r,F ��;.y. *'w.n. � ' Y7, a -r• fY���ro •r , • t,u sa.,.♦i `i ��'� 'ise � a;�v G ♦ a.:..✓ (Joins sheet 5 7) e ,(-1:11 . PIPE NETWORK CALCULATIONS The following is the input batch file and output report from a HYDRA analysis of the pipe network on Vista Del Mar. The analysis was done using the rational method, and using the intensity -duration -frequency curve for Snohomish County (per WSDOT.) This should be slightly conservative relative to city standards. Input batch file: JOB 2926 REM Set default parameters to 10-min interval/time dependent mode r EPD .012 2 .9 ! CONC Pipe FIL DI. SNOOO.INC !Change input file for different storms NEW KAIREZ STO 0.23 0.50 (.0.1000 50 ) LOT 12 EPI 22 180.92 180.92 178.42 176.42 8 [CI19-CB19) STO 0.28 0.45 ( 0.2308 130 ) LOT 1 EPI 150 180.92 165.20 176.42 160.70 12 [CB19-CB18) STO 0.57 0.35 ( 0.0952 210 ) LOT 2 EPI 127 165.20 157.85 160.70 154.98 12 [CB18-DET ] HOL KAIREZ. NEW LOTS STO 0.62 0.40 ( 0.1071 280 ) LOTS 3-4 EPI 37 158.15 157.85 155.35 154.98 12 [CB17-DET HOL LOTS NEW CDSW STO 0.28 0.90 ( 0.1000 50 ) C-D-S EPI 52 154.07 157.98 151.31 151.05 12 [CB15-DET ) HOL CDSW NEW CDSE STO 0.78 0.45 ( 0.1071 280 ) LOTS 5,6,10 EPI 49 160.06 157.98 157.56 155.48 12 [CB14-DET ) HOL CDSE NEW NORTH STO 0.01 0.25 ( 0.1000 10 ) DETENTION REC KAIREZ REC LOTS REC CDSE REC CDSW EPI 79 157.98 162.30 146.38 146.10• 12 [CB13-CB12) STO 0.25 0.50 ( 0.1333 150 ) LOT10 EPI 82 162.30 147.50 146.10 145.00 12 [CB12-CB11) STO 0.36 0.35 (.0.1333 150 ) LOT 11 EPI 170 147.50 142.30 145.00 139.80 12 [CB11-CB10) STO 0.70 0.35 ( 0.1333• 150 ) LOT 8-9 EPI 113 142.30 133.00 139.80 130.50 12 [CB10-CB9) STO 0.28 0.45 ( 0.1333 150 ) LOT 7-8 EPI 71 133.00 132.50 130.50 129.50 12 [CB9-CB7 ) STO 0.08 0.90 ( 0.1333 150 ) 91ST PLACE EPI 50 132.50 117.50 129.50 113.50 12 [CB7-CB6) STO 0.10 0.70 ( 0.1333 150 ) LOT 14 EPI 74 117.50 105.00 113.50 97.00 12 [CB6-DET) OFE 102.33 HOL END END Output report: The following shows the uncontrolled routing of the 100-year design storm (Snohomish County) through the pipe system. It does not take into account any attenuating influence of the. detention system, and assumes the lower detention pipe is full. The report shows the hydraulic grade line reaching the surface at link 11, elevation 133.48. This catchbasin has been raised to match the HGL at that point in the plans. Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington Page 1 ----------------------- C:\4\2926NET.CMD 15:33 10-Feb-97 CFS 2926 *** KAIREZ Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 1 22 0.0909 178.42 0.0 0.4 0.43 3.92 180.92 180.92 CI19-CB19 8 176.42 0.0 0.0 6.29 11.10 178.59 176.59 0.26 2.33 4.33 2 150.0.1048 176.42 0.0 0.9 0.91 12.40 180.92 165.20 CB19-CB18 12 160.70 0.0 0.0 7.97 7.35 176.64 160.92 0.22 4.28 4.28 3 127 0.0450 160.70 0.0 1.3 1.29 8.13 165.20 157.85 CB18-DET 12 154.98 0.0 0.0 6.29 15.83 161.00 155.28 0.30 4.20 2.57 ---------------------------------------------------- Lateral length= 299 'Upstream length= 299 *** LOTS Analysis of Existing Pipes Link. Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 4 37 0.0100 155.35 0.0 0.7 0.71 3.83 158.15 157.85 CB17-DET 12 154.98 0.0 0.0 3.10 18.64 155.•68 155.31 0.33 2.47 2.54 ---------------------------------------------------- Lateral length= 37 Upstream length= 37 *** CDSW Analysis of Existing Pipes Link Long Slope. Invert San Sto Qdes Qmax. GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 5 52 0.0050 151.31 0.0 1.0 0.95 2.71 154.07. 157.98 CB15-DET 12 151.05 0.0 0.0 2.67 35.18 151.-77 151.51 0.46 2.30 6.47 ---------------------------------------------------- Lateral length= 52 Upstream length= 52 Lovell - Sauerland and Associates HYDRA Version 4.65 Lynnwood, Washington Page 2 C:\4\2926NET.CMD 15:33 10-Feb-97 CFS 2926 *** CDSE Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 6 49 0.0424 157.56 0.0 1.0 1.04 7.89 160.06 157.98 CB14-DET 12 155.48 0.0 0.0 5.84 13.21 157.84 155.76 0.28 2.22 2.22 ---------------------------------- Lateral length= 49 Upstream length= 49 *** NORTH - Analysis of Existing Pipes Link Long Slope Invert San Sto Qdes Qmax GrUp GrDn SrCh/Dlt Diam Up/Dn Inf Mis Vel %Cap HGLUp HGLDn Parallel d/D QRem DiffUp DiffDn Replace 7 79 0.0035 146.38 0.0 3.7 3.69 2.28 157.98 162.30 *.** CB13-CB12 12 146.10 0.0 0.0 4.70 161.96 149.12 147.90 12 0.90 1.41 8.86 14.40 15 8 82 0.0134 146.10 0.0 4.0 3.98 4.44 162.30 147.50 *** CB12-CB11 12 145.00 0.0 0.0 5.06 89.64 147.90 146.78 0.82 14.40 0.72 9 170 0.0306 145.00 0.0 4.3 4.29 6.70 147.50 142.30 *** CB11-CB10 12 139.80 0.0 0.0 5.46 64.02 146.78 141.99 0.65 0.72 0.31 10 113 0.0823 139.80 0.0 4.9 4.90 10.99 142.30 133.00 CB10-CB9 12 130.50 0.0 0.0 6.23 44.56 141.99 133.48 0.53 0.31 -0.48 11 71 0.0141 130.50 0.0 5.2 5.21 4.54 133.00 132.50 CB9-CB7 12 129.50 0.0 0.0 6.63 114.54 133.48 131.77 6 0.90 0.66 -0.48 0.73 15 12 50 0.3200 129.50 0.0 5.4 5.36 21.66 132.50 117.50 *** CB7-CB6 12 113.50 0.0 0.0 6.82 24.73 131.77 115.95 0.38 0.73 1.55 13 74 0.2230. 113.50 0.0 5.5 5.54 18.08 117.50 105.00 *** CB6-DET 12 97.00 0:0 0.0 7.05 30.62 115.95 102.33 0.43' 1.55 2.67 ---------------------------------------------------- Lateral length= 639 Upstream length= 1076 Duration -Intensity -Frequency data for 100-year design storm: rem Duration -Intensity curve; 100-year storm; Snohomish county rai ( + 0 /3.780 5 /3.780 6 /3.500 7 /3.300 + 8 /3.120 9 /2.950 10 /2.825 12 /2.600 + 14 /2.410 16 /2.250 17 /2.180 18. /2.110 + 19 /2.050 20 /1.990 22 /1.890 25 /1.770 + 50 /1.200 60 /1.100 100 /0.800 1000 /0.800 ) ret DETENTION SYSTEM SIZING The following are the spreadsheets modeling the detention system for the purpose of sizing the orifices. DRAINAGE CALCULATIONS 10-Feb-97 DETENTION PIPE FOR NICHOLAS LANE 04:07 PM DETENTION PIPE SIZE Estimate of required detention storage volume = 2350 cf Assume a det. pipe 84.0 inches, diameter Cross section area = 38.5 sf Usable vol. of Type I CB 6.0 sf/ft = cf Usable vol. of 2.0 Type II MH 54.0 inch dia = 222.7 cf Usable vol. of Type 11 MH 72.0 inch dia = cf Usable vol. of 18.0 inch pipe: ft long = cf Usable vol. of 36.0 inch pipe: 4.0 ft long = 28.3 cf Required pipe volume = 2099.1 cubic feet Required pipe length = 54.5 linear feet Length of pipe used = 55.0 FT. Storage provided = 2367.6 cubic feet Minimum grade elevations: Top D/S detention CB 104.83 with 2.50 ft Overflow clearance Top D/S detention CB 104.00 with 2.0 ft cover Top U/S detention CB 104.33 with 2.0 ft cover Min Grnd surf. elev = 102.83 (over any inlet: 0.5 ft above OF Inv elev at U/S end = 95.28 Max water surface elev 102.33 (detn. pipe sl. = 0.50% ) Invert elevation = 95.00 CALCULATION OF OUTLET SIZE Required release rate, orifice 1 = 0.450 Required release rate, orifice 2 = 0.850 Required release rate, orifice 3 = Storage At elevation: H, ft a, sf d,ft d,inches provdN ----- ------ - --- - - -- ----------- ---------- ---------- -- �. 95.00 7.05 0.034 0.21 2 - 1 /2 0 99.40 2.65 0.105 0.37 4 - 7116 1546 -0 .Full storage = 2368 --- ----- ---- ---- --------- --- - area, a=Qdo/(.62x(2xgxh)".5) g=32.2 orifice diameter, d = (4/pi x a)".5 1_5 -- -----------..-..-- ------ ---- y W j m ! ' L fq 1 i. 100-YEAR TARGET �• c rn 0.5 - I c m 10-YEAS RGET-,t CU F- o{ I 0 500 1000 1500 2000 2500 Detention Volume, cubic feet A Max water surface elev = 102.05 (detn. pipe sl. = ) 1----round pipe --- ---I I-cmpa-I Water Surf Depth wetted Hyd wetted Wetted Pipe Struc. Or. 1 Or. 2 Or. 3 Elev. feet width R Area Area Vol. Vol. rel. rel., rel. 95.000 95.129 0.129 1.88 0.54 0.16 0.269 9 4.6 0.061 95.257 0.257 2.63 0.77 0.45 0.808 25 9.2 0.086 95.386 0.386 3.19 0.95 0.83 1.347 46 13.8 0.105 95.514 0.514 3.65 1.10 1.27 1.886 70 18.4 0.122 95.643 0.643' 4.04 1.23 1.77 2.425 97 23.0 0.136 95.771 0.771 4.38 1.35 2.31 3.060 127 27.6 0.149 95.900 0.900 4.69 1.47 2.89 3.425 159 32.2 0.161 96.028 1.028 4.96 1.57 3.51 4.156 193 36.9 0.172 96.157 1.157 5.20 1.67 4.16 4.888 229 41.5 0.182 96.285 1.285 5.42 1.77 4.85 5.619 267 46.1 0.192 96.414 1.414 5.62 1.86 5.56 6.350 306 50.7 0.202 96.542 1.542 5.80 1.95 6.29 7.312 346 55.3 0.210 96.671 1.671 5.97 2.04 7.05 7.793 388 59.9 0.219 96.799 1.799 6.12 2.13 7.82 8.7.55 430 64.5 0.227 96.928 1.928 6.25 2.21 8.62 9.717 474 69.1 0.235 97.056 2.056 6.38 2.29 9.43 10.679 519 73.7 0.243 97.185 2.185 6.49 2.37 10.26 11.680 564 78.3 0.251 97.313 2.313 6.59 2.45 11.10 12.719 610 82.9 0.258 97.442 2.442 6.67 2.53 11.95 13.239 657 87.5 0.265 97.570 2.570 6.75 2.60 12.81 14.278 705 92.1 0.272 97.699 2.699 ' 6.81 2.68 13.68 15.317 753 96.7 0.278 97.827 2.827 6.87 2.75 14.56 16.356 801 101.3 0.285 97.956 2.956 6.91 2.83 15.45 17.433 850 106.0 0.291 98.084 3.084 6.95 2.90 16.34 18.511 899 110.6 0.298 98.213 3.213 6.98 2.98 17.23 19.050 948 115.2 0.304 98.341 3.341 6.99 3.05 18.13 20.127 997 119.8 0.310 98.470 3.470 7.00 3.12 19.03 21.205 ,1047 124.4 0.316 98.598 3.598 7.00 3.20 19.93 22.225 r 1096 129.0 0.321 98.727 3.727 6.99 3.27 20.83 23.187 1146 133.6 0.327 98.855 3.855 6.96 3.34 21.72 24.149 1195 138.2 0.333 98.984 3.984 6.93 3.42 22.62 24.630 1244 142.8 0.338 99.112 4.112 6.89 3.49 23.51 25.592 1293 147.4 0.344 99.241 4.241 6.84 3.57 24.39 26.554 1341 152.0 0.349 99.369 4.369 6.78 3.64 25.26 27.362 1390 156.6 0.354 99.498 4.498 6.71 3.72 26.13 28.171 1437 161.2 0.359 0.16 99.626 4.626 6.63 3.80 26.99 28.979 1484 165.8 0.365 0.25 99.755 4.755 6.53 3.87 27.83 29.383 1531 170.5 0.370 0.31 99.883 4.883 6.43 3.95 28.67 30.191 1577 175.1 0.375 0.36 100.012 5.012 6.31 4.03 29.49 30.922 1622 179.7 0.379 0.41 100.140 5.140 6.18 4.12 30.29 31.577 1666 184.3 0.384 0.45 100.269 5269 6.04 4.20 31.07 32.231 1709 188.9 0.389 0.49 100.397 5.397 5.88 4.29 31.84 32.885 1751 193.5 0.394 0.52 100.526 5.526 5.71 4.38 32.59 33.212 1792 198.1 0.398 0.55 100.654 5.654 5.52 4.47 33.31 33.866 1832 202.7 0.403 0.58 100.783 5.783 5.31 4.56 34.00 34.367 1870 207.3 0.408 0.61 100.911 5.911 5.07 4.66 34.67 34.867 1907 211.9 0.412 0.64 101.040 6.040 4.82 4.77 35.31 35.367 1942 216.5 0.417 0.67 101.168 6.168 4.53 4.88 35.91 35.868 1975 221.1 0.421 0.69 101.297 6.297 4.21 4.99 36.47 36.118 2006 225.7 0.425 0.72 101.425 6.425 3.84 5.12 36.99 36.580 2034 230.3 0.430 0.74 101.554 6,554 3.42 5.26 37.45 37.003 2060 234.9 0.434 0.77 101.682 6.682 2.91 5,42 37.86 37.426 2082 239.6 0.438 0.79 101.811 6.811 2.27 5.62 38.20 37.850 2101 244.2 0.442 0.81 101.939 6.939 1.30 5.91 38.43 38.273 2114 248.8 0.446 0.83 102.068 7.000 6.28 38.48 38.485 2117 250.9 0.451 0.85 102.196 7.000 6.28 38.48 38.485 2117 250.9 0.455 0.87 102.325 7.000 NA 38.48 38.485 2117 250.9 0.459 0.89 Total Total Vol Q 0.000 0.000 13 0.061 34 0.086 59 0.105 88 0..122 120 '0.136 155 0.149 191 0.161 230 0.172 270 0.182 313 0.192 � 356 0.202 401 0.210 447 0.219 495 0.227 543 0.235 592 0.243 642 0:251 693 0.258 745 0.265 797 0.272 849 0.278 902 0.285 956 0.291 1009 0.298 1063, 0.304 1117 0.310 1171 0.316 1225 0.321 1279 0.321 1333 0.333 1387 0.338 1440 0.344 1493 0.349 1546 0.354 1598 0.523 1650 0.613 1701 0.681 1752 .0.738 1801 0.788 1850 0.834 1898 0.876 1945 0.915 1990 0.952 2035 0.988 2077 1.022 2119 1.054 .2158 1.085 2196 1.115 2232 1.144 2265 1.173 2295 1.200 2322 1.227 2345 1.253 2363 1.279 2368 1.303 2368 1.328 2368 1.352 "A DRAINAGE CALCULATIONS 10-Feb-97 DETENTION PIPE FOR KAIREZ PLACE 04:09 PM DETENTION PIPE SIZE Estimate of required detention storage volume = 6000 cf Assume a det. pipearch 117.0 x 79.0 (width.and height) Cross section area = 52.0 sf Usable vol. of Type I CB 6.0 sf/ft = of Usable vol. of 2.0 Type II MH 54.0 inch dia = 209.4 cf Usable vol. of Type II MH 72.0 inch dia = cf Usable vol. of 18.0 inch pipe: ft long = of Usable vol. of 36.0 inch pipe: 4.0 ft long = 28.3 cf Required pipe volume = 5762.3 cubic feet Required pipe length = 110.8 linear feet Length of pipe used = 111.0 FT. Storage provided = 6009.7 cubic feet Minimum grade elevations: Top D/S detention CB 156.07 with 2.50 ft Overflow clearance Top D/S detention CB 154.96 with 2.0 ft cover Top U/S detention CB 155.57 with 2.0 ft cover Min Grnd surf. elev = 154:07 (over any inlet: 0.5 ft above OF: Inv elev at U/S end = 146.94 Max water surface elev = 153.57 (detn. pipe sl. = 0.50% ) Invert elevation = 146.38 CALCULATION OF OUTLET SIZE ------------------------- Required release rate, orifice 1 = 0.320 Required release rate, orifice 2 = 0.380 Required release rate, orifice 3 = Storage At elevation: H, ft a, sf d,ft d,inches provd. -«-----«--------- ----------------------------------- ------_«-----___----_«-----«------------------------• 146.38 6.63 0.025 0.18 2 - 3/16 0 �2"--3/4'- t 149.50 3.51 0.041 0.23 2966 - 0..._., Full storage = 6010 ---------------------------------------------------------- area, a=Qdo/(.62x(2xgxh)".5) 9=32.2 orifice diameter, d = (4/pi x a)".5 - 0.e -- --- -- - - -- -- - --- v vi 0.6 0) ! 100-YEAR TARGET 0 � I 0.4 m W N c 10-YEAR TARGET- rn H o - 0 2 4 6 8 Thousands Detention Volume, cubic feet Max water surface elev = 153.01 (detn. pipe sl. = ) ------round pipe ------I I-cmpa-I = Total Total Water Surf Depth wetted Hyd wetted Wetted Pipe Struc.� Or. 1 Or. 2 Or. 3 Vol Q Elev. feet width R Area Area rel. rel.-_____________ --- -----Vol. ------------------------------ --Vol. --- -----rel.--- 0.000 0.000 146.380 146,506 0.126 1.80 0.56 0.15 0.364 40 4.6 0.044 45 0.044 146.632 0.252 2.53 0.79 0.43 1.092 121 9.1 0.062 130 0.062 146.758 0.378 3.06 0.97 0.78 1.820 202 13.7 0.076 216 0.076 146.884 0.504 3.50 1.12 1.20 2.548 283 18.2 0.088 301 0.088 147.011 0.631 3.87 1.26 1.66 3.276 364 22.8 0.099 386 0.099 147.137 0.757 4.20 1.38 2.17 4.134 459 27.3 0.108 486 0.108 147.263 0.883 4.49 1.50 2.72 5.122 569 31.9 0.117 600 0.117 147.389 1.009 4.74 1.61 3.30 6.110 678 36.4 0.125 715 0.125 147.515 1.135 4.97 1.71 3.92 7.098 788 41.0 0.132 829 0.132 147.641 1.261 5.18 1.81 4.56 8.086 898 45.5 0.140 943 0.14D 147.767 1.387 5.37 1.91 5.22 9.230 1025 50.1 0.146 1075 0.146 147.893 1.513 5.54 2.00 5.91 9.880 1097 54.6 0.153 1151 0.153 148.019 1.639 5.69 2.09 6.62 11.180 1241 59.2 0.159 1300 0.159 148.146 1.766 5.83 2.18 7.35 12.480 1385 63.7 0.165 1449 0.165 148.272 1.892 5.96 2.26 8.09 13.780 1530 68.3 0.171 1598 0.171 148.398 2.018 6.07 2.35 8.85 15.080 1674 72.8 0.176 1747 0.176 148.524 2.144 6.17 2.43 9.62 16.484 1830 77.4 0.182 1907 0.182 148.650 2.270 6.26 2.51 10.40 17.888 1986 82.0 0.187 2068 0.187 148.776 2.396 6.33 2.59 11.20 19.292 2141 86.5 0.192 2228 0.192 148.902 2.522 6.40 2.67 12.00 20.696 2297 91.1 0.197 2388 0.197 149.028 2.648 6.46 2.75 12.81 22.100 2453 95.6 0.202 2549 0.202 149.154 2.774 6.50 2.83 13.63 23.556 2615 100.2 0.207 2715 0.207 '149.281 2.901 6.54 2.90 14.45 25.012 2776 104.7 0.212 2881 0.212 149.407 3.027 6.56 2.98 15.28 25.740 2857 109.3 0.216 2966 0.216 149.533 3.153 6.58 3.06 16.11 27.196 3019 113.8 0.221 0.04 3133 0.257 149.659 3.279 6.58 3.13 16.94 28.652 3180 118.4 0.225 0.08 3299 0.306 149.785 3.405 6.58 3.21 17.77 30.030 3333 122.9 0.229 0.11 3456 0.337 149.911 3.531 6.57 3.29 18.59 31.330 3478 127.5 0.233 0.13 3605 0.363 150.037 3.657 6.54 3.36 19.42 32.630 3622 132.0 0.238 0.15 3754 0.386 150.163 3.783 6.51 3.44 20.24 33.930 3766 136.6 0.242 0.17 3903 0.407 150.289 3.909 6.47 3.52 21.06 35.230 3911 141.1 0.246 0.18 4052 0.426 150.416 4.036 6.41 3.60 21.87 36.426 4043 145.7 0.250 0.19 4189 0.444 150.542 4.162 6.35 3.68 22.68 37.518 4164 150.3 0.253 0.21 4315 0.460 150.668 4.288 6.27 3.76 23.48 38.610 4286 154.8 0.257 0.22 4441 0.476 150.794 6.19 3.84 24.26 39.702 4407 159.4 0.261 0.23 4566 0.492 150.920 .4.414 4.540 6.09 3.92 25.04 40.248 4468 163.9 0.265 0.24 4631 0.506 151.046 4.666 5.98 4.00 25.80 41.340 4589 168.5 0.268 0.25 4757 0.520 151.172 4.792 5.86 4.09 26.54 42.224 4687 173.0 0.272 0.26 4860 0.534 151.298 4.918 5.72 4.18 27.28 43.108 4785 177.6 0.276 0.27 4963 0.547 151.424 5.044 5.57 4.26 27.99 43.992 4883 182.1 0.279 0.28 5065 0.560 151.551 5.171 5.41 4.36 28.68 44.876 4981 186.7 0.283 0.29 5168 0.573 151.677 5.297 5.22 4.45 29.35 45.760 5079 191.2 0.286 0.30 5271 0.585 151.803 5.423 5.02 4.55 30.00 46.436 5154 195.8 0.289 0.31 5350 0.597 151.929 5.549 4.79 4.65 30.61 47.112 5229 200.3 0.293 0.32 5430 0.609 152.055 5.675 4.54 4.76 31.20 47.788 5304 204.9 0.296 0.32 5509 0.620 152.181 5.801 4.26 4.88 31.76 48.464 5380 209.4 0.299 0.33 5589 0.631 152.307 5.927 3.94 5.00 32.28 49.140 5455 214.0 0.302 0.34 5669 0.642 152.433 6.053 3.58 5.13 32.75 49.426 5486 218.5 0.306 0.35 5705 0.653 152.559 6.179 3.16 5.28 33.18 49.998 5550 223.1 0.309 0.35 5773 0.663 152.686 6.306 2.65 5.46 33.54 50.570 5613 227.7 0.312 0.36 5841 0.674 152.812 6.432 1.98 5.67 33.84 51.142 5677 232.2 0.315 0.37 5909 0.684 152.938 6.558 0.82 6.03 34.03 51.714 5740 236.8 0.318 0.38 5977 0.694 153.064 6.583 6.28 34.04 52.000 5772 237.7 0.321 0.38 6010 0.704 153.190 6.583 6.28 34.04 52.000 5772 237.7 0.324 6.39 6010_ 0.714 153.316 6.583 6.28 34.04 52.000 5772 237.7 0.327 0.40 6010 0.723 153.442 6.583 6.28 34.04 52.000 5772 237.7 0.330 0.40 6010 0.733 153.568 6.583 NA 34.04 52.000 5772 237.7 0.333 0.41 6010 0.742 Z 6 m LIU & ASSOCIATES, INC. Geweed eel Engineering Mr. Scott Schrieber Ronscott Construction, Inc. 761 Daley Street Edmonds, WA 98020 Dear Mr. Schrieber: Subject: Building Setback Single -Family Residence 18007 Vista Del Mar Edmonds, Washington L&A Job No. 12-028 Engineering Geology July 18, 2012 Earth Science JUL 18 2012 BUILDING DEPARTMENT CITY OF EDMONDS The eastern two thirds of the project site is a nearly level bench sloping down westward very- gently, with the remaining area of the site drops steeply at a grade more than 40% and doNNm about 10 to 12 feet to the neighbor's yard. The neighbor's yard then continues to descend gently to moderately westerly across a private road towards the top of a steep bluff slopes. Besides the steep slope bordering the west side of the site, there are no other critical areas -,xithin 200 feet downhill from the site. The top of the steep slope is at about El. 186 to 190 feet and the toe at about El. 176 to 1.78 feet. The finished floor of the basement level of the proposed building will be at El. 182 feet.. As shown on Plate 2 — Site Plan, construction of the basement Nvill required excavation cutting into and notching beyond the top of the steep slope bordering the west side of the site, Therefore, the top of slope is no longer a reference point for building setback and buffer from the top of slope also no longer applies to building setback. 19213 Kenlake Place ENE - Kenmore, Washington 98028 Phone (426) 483-9134 - Fax (425) 486-2746 July 18, 2012 Mr. Scott Sch.rieber/Ronscott Construction L&A Job No. 12-028 Page 2 To assure building stability-, we recomruend that the building be set back sufficiently from the toe of slope and deep enough such that an imaginary plane connecting the edge of building footing foundations to the toe of the slope would be no steeper than 3H:IV, as shown on Plate 4. The building should be designed to ticithstand sliding and overturning failures due lateral active soil pressure acting on the back of the building using recommended soil parameters in our. 5/30/2012 Geotechnical report. Please feel free to contact us if you Dave any questions. Plates 2 and 4 attached Yours very truly, LW , SSOCUTES, INC.n -�fL J. S. (Julian) Liu, Ph.D., P.E. Consulting Geotechnical Engineer LIU & ASSOCIATES, INC. LTU & ASSOCIATES. INC. Gecie&nica! Engineering - Engineering Geology • Eanh Science BUILDING SETBACK SINGLE-FAMILY RESIDENCE 18007 KAiREZ DRIVE EDMONDS, WASHINGTON YY t 77-rr 1 a� qLV LIU & ASSOCIATES. INC Geot cht_c_aiEngineering - Engineering GM109Y - Earth Science SITE AND EXPLORATION LOCATION PLAN SINGLE-FAMILY RESIDENCE 18007 KAIREZ DRIVE EDMONDS, WASHINGTON 10B NO. 12-028 1 DATE 5/20/20L.2 I PLATE LIU & ASSOCIATES, INC. Geotechnical Engineering Yvir. Scott Schrieber Ronscott Construction, Inc. 761 Daley Street Edmonds, WA 98020 Dear Mr. Sch.rieber: Engineering Geology August 3, 2012 Subject: Addendum No. 1 to 5/30/2012 Geotechnical Report Review of ECDC 23.80.070.A.2 and 23.80.070.A.3 Single -Family Residence 1.8007 Vista Del Mar Edmonds, Washington L&A Job No. 12-028 Earth Science AUG - 3 2012 BUILDING DEPARTMENT CITY OF EDMONDS We have performed a geotechnical engineering study for the subject project with our findings and recommendations presented in our geotechnical report dated My 30, 2012. Included in this addendum are our comments on the review of the Edmonds Community Development Code applicable to enAronmentally critical areas related to this project. 23.80,070 Development Standards Specific Hazards A. Erosion and Landslide hazard Areas 2. Alterations a. The development will not increase surface water discharge or sedimentation to adjacent properties beyond development conditions. No, it will not. b. the development will not decrease slope stability on adjacent properties. No, it will not. 19213 Kenlake Place NE - Kenmore, Washington 98028 Phone (425) 483-9134 - Fax (426) 486-2746 STREET FILE August 3, 2012 Mr. Scott Schrieber/Ronscott Construction L&A Job No. 12-028 j Page 2 c. Such alteration will not adversely impact other critical areas. No, it wi l l not. 3. Design Standards a. Stability against landslide The steep slope is _localized with a vertical drop of about 12 to 14 feet and is formed by dense to very -dense advance outwash deposits of high shear strength. Therefore, theproposed development will have a safety factor of at least 1.5 against slide under static loading condition and at least 1.2 under seismic loading condition. b. Structures and improvements shall be clustered to avoid geologically hazardous areas and other critical areas. N/A c. Structures and improvements shall minimize alterations to the neutral contour of the slope, and foundations shrill. be tiered where possible to conform to existing topography. Site contour will not be altered except the area where a U-shaped cut is to be made into the slope for building footprint excavation. d. Structures and improvements shall be located to preserve the most critical portion of the site and its natural. landforms and vegetation. N/A e. The proposed development shall not result in greater risk or a need for increased buffers on neighboring properties. No. it would not. f The use of retaining wills that allow the maintenance of existing natural slope area is preferred over graded artificial slopes. . N/A LIU & ASSOCIATES, INC. August 3, 201.2 Mr. Scott SchrieberlRonscott Construction L&A Job No. 12-028 Page 3 g. Development shall be deigned to minimize unpervious lot coverage. To be answered by Civil ingineer I 1 Please feel free to contact us1f you have any questions. Yours very truly, LIU , SSOCIATES, INC. 7 A 4"' J. S. (Julian) Liu. Ph.D., P.F. Consulting Geotechnical Engineer LIU & ASSOCIATES, INC. LIU & ASSOCIATES, INC. Geoteanicat Engineering Engineering Geology May 30, 2012 Mr. Scott Schrieber Ronscott Construction, Inc. 761 Daley Street Edmonds, WA 98020 Earth Saenoe Dear Mr. Schrieber: RECEIVED .'JUN 12 2012 Subject.: Geotechnical Investigation and Recommendations DEVELOPMENT SERMES CTR, Single=Family Residence CITY OF EDMONDS 18007 Kcge- )nve Edmonds, Washington L&A Job No. 12-028 UiTRODUCTION We have completed a geotechnical investigation for the proposed development of a single-family residence on the subject property, located at the above address in Seattfie, Washington. The general location of the site is shown on Plate- l — Vicinity Map. The purpose of this investigation is to characterize the subsurface conditions of the site and provide geotechnical recommendations for site grading,. slope stabilization, erosion mitigation, surface and ground water drainage control, foundation support, etc., for the development of the single-family residence. Presented in this report are our findings, conclusions and recommendations. PROJECT DESCRIPTIOIt Weunderstand that the subject single-family residence is to be a one-story, wood -framed structure with a basement. The basement level is to be below grade on the east side and 19213 Keniake Place NE - Kenmore, Washington 98028 Phone (425) 483-9134 - Fax (426) 486-2746 STREET FILE May 30, 2012 Single -Family residence L&A Job No. 12-028 Page 2 day -lighted on the west side of the house. The structure is to be supported on perimeter concrete foundation walls and interior bearing walls and columns. Construction of the basement of the house would require cut to about 11 feet deep on the.east side that would gradually decrease and meet the existing grade on the west side of the house. SCOPE OF SERVICES Our scope of services for this investigation comprises specifically the following: 1 Review the geologic and soil conditions at the site. based on a published geologic map. 2. Explore the site for subsurface conditions with backhoe test pits to a firm bearing soil stratum or to the maximum depth (about 10 feet) capable by the backhoe used in. excavating the test pits, whichever occurs first. 3. Perform necessary geotechnical analyses and provide geotechnical recommendations for grading, slope stabilization, erosion mitigation, surface and ground water drainage control and foundation support to building, etc., based on subsurface conditions encountered by the test pits and results of our geotechnical analyses. 4. Prepare a written report to present our -findings, conclusions, and geotechnical recommendations. LIU & ASSOCIATES, INC. May 30, 2012 Single -Family residence L&A Job No. 12-028 Page 3 SITE CONDITIONS SURFACE CONDITION The subject residence site is situated on the mid -slope of a moderate to steep, northwesterly -declining hillside. The site is roughly a wedge shaped parcel, bounded. by Vista Del Mar Drive to the northeast and by Olympic View Drive to the southeast and is adjoined by single-family residences to the west. The site generally slopes do«n westward very gently at about 2% to 10% grade to within about 20 to 35 feet of its west boundary, then drops off steeply at about 50% grade to .a gabion retaining wall which .lies at about 10 feet inside the west boundary of the site. The ground then descends more moderately from the base of the gabion retaining wall westward past the west boundary of the site. The site is currently vacant and undeveloped. The gently sloped eastern portion is mostly covered by overgrown lawn grass while the western. steep slope is covered with dense brush. and dotted by occasional trees. GEOLOGIC SETTING The Geologic Mw of the Edmonds East and Part of the Edmonds West Ouadrangles Washinaton, by James P. Minard, published by U. S. Geological Survey in 1983, was referenced for the geologic and soil conditions at the residence site. According to this publication; the surficial soil units at and _in the vicinity of the subject residence site are mapped as a Older Gravel (Qog) soil unit underlain by a Transitional Beds (Qth) soil unit. LIU & ASSOCIATES, INC. May 30,. 2012 Single-family residence UA Job No.12-028 Page 4 The older gravel soil unit is composed of advance out deposits of stratified sand and gravel with very minor amount of silt and clay, laid down by the meltwater of advancing glacial ice of the last glacier. Due to their generally granular composition, the advance outwash deposits are. of moderately .high permeability and drains fairly well. The older gravel deposits had been glacially overridden and are generally dense to very dense in their natural, undisturbed state, except the soil in the top 2 to 4 feet exposed on slopes which are normally weathered to a loose to medium -dense state. The older gravel deposits can stand in steep cuts or natural slopes for extended period when undisturbed. Where exposed on slopes with poor vegetation cover and subjected to storm runoff or groundwater seepage, the surficial older gravel deposits can be gradually eroded and may slough and redeposit to a flatter inclination. The underlying fresh older gravel deposits in their native, undisturbed state can provide good foundation support with little settlement expected for light to moderately heavy structures. The transitional beds soil unit is composed of proglacial lacustrine deposits of the Vashon Drift, consisting mostly of dark -gray, cohesive, over -consolidated, fine sandy to clayey silt. It is in part massive, but commonly horizontally laminated and interbedded with light -gray silt. The transitional beds deposits may contain a few thin beds of fine to very fine sand locally. Having been over -ridden by the Vashon glacier, the transitional beds soil is very stiff to hard, with extremely low permeability, in its native undisturbed state. Where exposed, the upper few inches to few feet of this soil unit may be fractured and weathered with much •weaker strength. The transitional beds soil unit, however, was not. encountered by the test pits excavated on the site. .LIU & ASSOCIATES, INC. May 30, 2012 Single -Family residence L&A Job No.12-028 Page 5 SOIL CONDITION Subsurface conditions of the site were explored with two test pits. The test pits were excavated on March 22, 2012, with a rubber -tracked backhoe, to depths of 9.0 and 8.5 feet. The approximate locations of the testpits are shown on Plate 2 - Site and Exploration Location Plan. The test pits were located with either a tape measure or by visual reference to existing topographic features in the field and on the topographic survey map, and their locations should be considered only accurate to the measuring method used. A geotechnical engineer from our office was present during subsurface exploration, who examined the soil and geologic conditions encountered and completed logs of test pits. Soil samples obtained from each soil layer in the test pits were visually classified in general accordance %vith United Soil Classification System, a copy of which is presented on Plate 3. Detailed descriptions of soil layers encountered during site exploration are presented in test pit logs on Plates 4 and 5. Both test pits were located just behind the top of the steep slope in the western portion of the site. The test pits encountered loose fill about 4.0 to 4.5 feet thick. Underlying the fill is a layer of relic topsoil, about 12 inches thick. The relic topsoil is underlain to the depths explored by a light -brown deposit of dense, fine to medium sand with a trace of gravel. This deposit appears to be of advance outwash of the older gravel soil unit. LIU & ASSOCIATES, INC. May 30, 2012 Single -Family residence L&A Job No. 12-028 Page 6 GROUNDWATER CONDITION Groundwater was not encountered by either test pit. The fill and relic topsoil are loose and would allow stormwater to seep through. The underlying advance outtivash soil of fine to medium sand tit7th a trace of gravel is also of moderately high permeability and would allow storm -*eater to infiltrating through. Therefore, groundwater should have minimal impact on construction work of the proposed development. DISCUSSION AND RECOMMENDATIONS GENERAL Based on the subsurface conditions encountered by the two test pits excavated on the site; it is our opinion the subject site is suitable for its proposed development from the geotechnical engineering view point, provided the recommendations in this report are fully implemented and observed during and folio-sving completion of construction. The site is underlain by advance outwash deposits of dense fine to medium sand, which are quite stable. Conventional footing foundations constructed on or into this competent basal soil may be used to support the proposed residence. Footing foundations, however, should be set back a sufficient distance from the toe of the western steep slope to maintain long-term stability. Due to the presence of the western steep slope, we recommend grading and foundation construction of the proposed residences be carried out and completed in the dryer period from April 1 through October 31 to minimize weather -related complication during construction. LIU & ASSOCIATES, INC. May 30, 2012 Single -Family residence L&A Job No. 12-028 Page 7 TEMPORARY DRAINAGE AND EROSION CONTROL The onsite surficial soils contain a high percentage of fines which are sensitive to moisture and can be easily disturbed by construction traffic. A layer of clean, 2-to-4-inch quarry spalls should be placed over areas of frequent traffic, such as the entrance to the site; as required, to protect the subgrade soils from disturbance by construction traffic. Silt. fences should be installed along the downhill sides of construction area to minimize transport of sediment onto neighboring properties or the streets. The bottom of the filter cloth of silt .fences should be anchored in a trench filled with onsite soil. Ditches or interceptor trench drains should be installed around construction area, as required, to intercept and drain away storm runoff and near -surface groundwater seepage, if any. Water captured by such ditches or interceptor trench drains should be discharged into a nearby storm inlet. The storm inlet should be covered with a non -woven filter fabric sock to prevent sediment from entering the storm sewer system. The filter sock should be cleaned frequently during construction to prevent clogging, and should be removed after completion of construction. Spoil soils should be hauled off of the site as soon as possible. Spoil soils and imported structural fill material to be stored on site should be located in areas where the ground surface is no steeper than 15% .grade and should not be within .10 feet of the top of the western steep slope. Stockpiled spoil soil should covered with plastic tarps securely weighted down with sandbags for erosion protection. LIEU & ASSOCIATES, I:NC. May 30, 2012 Single -Family residence L&A Job No. 12-02.8 Page 8 SITE PREPARATION AND GENERAL GRADING Vegetation within construction limits should be cleared and grubbed. Fill; topsoil and weak surficial soil should be completely stripped within building pads and in areas subject to traffic and structural load. The exposed soil should be compacted to a non - yielding state with a vibratory compactor and proof -rolled with a piece of heavy earthwork equipment. GEOLOGIC HAZARDS AND REMEDIATION Landslide Hazard The advance outwash deposits of dense sand underlying the site at shallow depth are of moderately high shear strength and have high icsistance against slope failures. The loose fill and relic topsoil on top of the western steep slope are of suspect stability and may slough off. To stabilize the these loose surficial soils on top of the steep slope, they should be removed and replaced with compacted structural fill per recommendations in the EXCAVATION AND FU L SLOPES and STRUCTURAL FILL sections of this report. Erosion Hazard We did not note any signs of soil erosion within the site. The fill and relic topsoil on the top of the western. steep slope are of low resistance against erosion; and can be eroded easily if the slope is devoid of vegetation cover. Progressive erosion may result in these weak soils. To mitigate such erosion hazard, the vegetation cover on the slope should be preserved and maintained. Areas on the slope devoid of vegetation and unpaved exposed ground within the site resulted from construction activities should be seeded and LIU & ASSOCIATES, INC. May 30, 2012 Single -Family residence L&A Job No. 12-028 Page 9 vegetated as soon as possible. Concentrated stormwater should not be discharged onto the ground or onto the steep slope within the site. Storm runoff over impervious surfaces, such as roofs and paved driveway, should be captured with underground drain lines connected to roof downspouts and by catch basins installed in the driveway. Stormwater collected by such drain line systems should be tightlined to discharge into a storm sewer or a suitable stormwater disposal .facility. Spoil. soils and yardwaste should not be disposed of onto the steep slope within or adjacent to the site. Seismic Hazard The Puget Sound region is in an active. seismic, zone. The site is underlain at shallow depth by advance ounvash of dense sand of moderately high shear strength and should be quite stable. The loose fill and topsoil on the top of the steep slope may slough off during strong earthquakes. Such hazard may be mitigated by remove and replace these weak soils with compacted structural fill constructed in accordance with the recommendations in the EXCAVATION AND FILL SLOPES and STRUCTURAL FILL sections of this report. The proposed residence should be designed for seismic forces induced by strong earthquakes. Based on the soil. conditions encountered by the test pits, it is our opinion that. Seismic Use Group I and Site Class D should be used in the seismic design of the residence in accordance mvith the 2009 International Building Code (IBC). LIU & ASSOCIATES, INC. May 30. 2012 Single -Family residence L&A Job 'No. 12-028 Page 10 EXCAVATION AND FILL SLOPES Under no circumstance should excavation slopes be steeper than the limits specified by local, state and federal safety regulations if workers have to perform construction work in - excavated areas. Unsupported temporary cuts greater than 4 feet in height should be no steeper than 1-1/4..H:l V in the surficial topsoil and loose to medium -dense weathered soil and no steeper than 3/414:1V in the underlying dense advance ounvash sand soil. Permanent cut banks should be no steeper than 3H:1 V in the surficial loose fill and topsoil and no steeper than 2-1/411:1V in the underlying dense advance outwash sand soil.. The soil units and the stability of cut banks should be verified by a geotechnical engineer during excavation. Permanent fill embankments required to support structural or traffic load should be constructed with compacted structural fill placed over undisturbed, proof -rolled, dense advance outwash sand soil after the surficial unsuitable soils are completely stripped. The exposed ground exceeding 15% grade should .be benched with vertical steps not exceeding 4 feet tall after stripping of unsuitable surficial soils and prior to construction of structural fill. The sloping face of permanent fill embankments should be no steeper than 2-114H:IV. Upon completion, the sloping face of penmanent fill embankments should be thoroughly compacted to a non -yielding state with a hoe -pack. The above recommended temporary and permanent cut and fill slopes are under the assumption that groundwater seepage is not to be encountered during construction. If groundwater seepage is encountered; the construction should be immediately halted and LIU & ASSOCIATES, INC. May 30, 2012 Single -Family residence L&A Job No. 12-028 Page 11 the slope stability re-evaluated. The slopes may have to be flattened and other measures taken to stabilize the slopes. Surface runoff should not be allowed to flow uncontrolled over the top of cut or fill slopes. Permanent cut slopes and fill embankments should be vegetated as soon as possible for long-term stability; and should be covered with plastic tarps; as required, to provide erosion protection against storm runoff until the vegetation is fully established. STRUCTURAL FILL Structural fill is the fill that supports structural or traffic load. Structural fill should consist of clean granular soils free of organic and other deleterious substances and with particles not larger than four inches. Structural fill should have a moisture content -'Nithin one percent of its optimum moisture content at the time of placement. The optimum moisture content is the soil water content that enables the soil to be compacted to the highest dry density .for a given compaction effort Onsite clean granular soils meeting the above requirements may use as structural fill. Imported material to be used as structural fill; should be clean, free -draining, granular soils containing no more than 5% by weight finer than the No. 200 sieve based on the fraction of the material passing No. 4 sieve, and should have individual particles not larger than three inches. The ground over which structural fill is to be placed should be prepared in accordance with. recommendations in the SITE PREPARATION AND GENERAL GRADING and LIU & ASSOCIATES, INC. May 30, 2012 Single -Family residence L&A Job No. 12-028 Page 12 EXCAVATION AND 1+ILL SLOPES sections of this report.. Structural fill should be placed in lifts no more than 10 inches thick in its loose state, with each lift compacted to a minimum percentage of the maximum dry density determined by ASTM D1557 (Modified Proctor Method) as follows: Application Within building pads and under foundations Roadway/driveway subgrade Retaining wall backfill Uti I ity trench backfill BUILDING SETBACK % of Maximum Dry Density 95% 95% for top 3 feet and 90% below 92% 95% for top 4 feet and 90% below The purpose of building setback from the top or toe or an overly steep portion of a slope is to establish a safe buffer such that if a slope failure should occur the stability of the structure can be maintained and damages to the structure minimized. The west side of the site is flanked by a steep slope. To maintain stability of the residence, the building should be set back sufficiently and the footing foundations of this building should be embedded deep enough such that. a plane drawn from the outer edges of the footing foundations to the toe of the steep slope should be no steeper than 3H:1 V inclination. Our setback recommendations for the residence are shown on Plate 5. BUILDING FOUNDATIONS Conventional footing foundations may be used to support the proposed residence. The footing foundations should be constructed on or into undisturbed, dense advance out%vash sand soil. Water should not be allowed to accumulate in excavated areas of footing LIU & ASSOCIATES, INC. May 30, 2012 Single -Family residence L&A Job No. 12-028 Page 13 foundations or on -grade slabs. Disturbed soils in footing trenches or under on -grade slabs should be completely removed down to firm undisturbed soils or thoroughly re - compacted prior to pouring concrete for the footings and slabs. A layer of 2-inch-minus crushed rock should be placed over the footing bearing soils, as required, to protect the integrity of the soils from disturbance by construction traffic. If the above recommendations are followed, our recommended design criteria for footing foundations are as follows: • Allowable soil bearing pressure for footing foundations, including dead and live loads, should be no greater than 2,500 psf. • The minimum depth to bottom of perimeter footing below adjacent final exterior grade should be no less than 18 inches. The minimum depth to bottom of the interior footings below top of floor slab should be no less than 12 inches. • The minimum width should be no less than.l6 inches for continuous footings, and no less than 24 inches for individual footings, except those footings supporting light -weight porches and wood decks. A one-third increase in the above recommended allowable soil bearing pressure may be used v%rben considering short-term, transitory, wind or seismic loads. For the residence supported on dense advance outwash soil under the above allowable soil bearing pressure: we estimate .that the maximum total post -construction settlement of the building should be 3/4 inch or less and the differential settlement across building width should be .1 /2 inch or less. LIU & ASSOCIATES, INC. May 30, 2012 Single-hamily residence L&A Job No. 12-028 Page 14 Lateral loads can be resisted by the friction force between the foundations and the subgrade soils or the passive earth pressure acting on the below -grade portion of the foundations. For the latter, the foundations must be poured "neat'* against undisturbed soils or backfilled with a clean, free -draining, compacted structural fill. We recommend that an equivalent fluid density (EFD) of 300 pcf (pounds per cubic foot) for the passive earth pressure may be used for lateral resistance. The above passive pressure assumes that the backfill is level or inclines upward behind the foundations for a horizontal distance at least twice the depth .of the foundations below final grade. A coefficient of .friction of 0.55 between the foundations and the. subgrade may be used. These soil parameters are unfactored ultimate values, and a proper factor of safety should be used in calculating the resistance against lateral loads on the buildings. BASEMENT ANDRETAINING WALLS Building basement walls restrained at the top from lateral movement are considered unyielding and should be designed for a .lateral soil pressure under the at -rest condition. Retaining walls unrestrained at the top from lateral movement, may be designed for active soil pressure. We recommend that an at soil pressure of 50 pcf EFD (equivalent fluid density) and an active soil pressure of 35 pcf EFD be used for the design of building basement walls and retaining walls respectively, with a level or descending backslope. For walls urith ascending backslope; an additional pressure of 0.75 pcf per degree of the backslope angle above the horizontal should be added to the above design pressures. To counter the above active or at -rest pressure, a passive lateral.soil pressure of 350 pcf EFD may be used. This passive pressure value is applicable only to walls with a level or ascending finished grade for a horizontal distance at least twice the wall height. To resist LIU & ASSOCIATES, INC. May 30, 2012 Single-family residence L&A Job No. 12-028 Page 15 against sliding, the friction force between the .footings and the subgrade soils may be calculated based on a coefficient of friction of 0.55. The. above soil parameters are ultimate values based on a fully drained .backfill of the walls, and proper factors of safety should be applied in the design of the basement walls against sliding and overturning failures. A vertical drain mat, at least 12-inch-thick horizontally, consisting of clean, free -draining, pea gravel or washed gravel should be placed against the back of basement and retaining walls to prevent accumulation of groundwater behind and buildup of hydrostatic pressure against the walls. This drain mat fill should be compacted to a non -yielding state with a vibratory compactor. Structural fill should be used for the remaining Avail backfill. The top 18 inches of the backfill may consist -of compacted, clean, on -site sandy soils. A fl- inch perforated PVC footing drain pipe, as recommended in the DRAINAGE CONTROL section of this report, should. be provided for the basement and retaining walls. The drain lines should be hydraulically connected to the drain mat behind the walls. SLAB -ON -GRADE FLOORS Slab -on -grade floors, if used, should be placed on firm subgrade prepared as outlined in the SITE PREPARATION AND GENERAL EARTHWORK and the STRUCTURAL FILL sections of this report. Where moisture control is critical, the slab -on -grade floors should be placed on a capillary break which is in turn placed on the compacted subgrade. The capillary break should consist of a minimum. four -inch -thick layer of free -draining gravel or crushed rock containing no more than 5% by weight passing the No. 4 sieve. LIEU & ASSOCIATES, INC. May 30, 2012 Single -Family residence L&A Job No. 12-028 Page 16 We recommend that a vapor barrier, such as a 6-mil plastic membrane, be placed over the capillary break to keep moisture from migrating upwards. 179 ►r/ a►`.`J`1 Performance of driveway pavement is critically related to the conditions of the underlying subgrade soils. We recommend that the subgrade soils under the driveway be treated and prepared as described in the SITE PREPARATION AND GENERAL EARTHWORk section of this report. Prior to placing base material, the subgrade soils should be compacted to a non -yielding state with a vibratory roller compactor and proof -rolled with a piece of heavy construction equipment, such as a fully -loaded dump truck. Any areas with excessive weaving or deflection should be over -excavated and re -compacted or replaced with a structural fill or crushed rock placed and compacted in accordance with the recommendations provided in the STRUCTURAL FILL section of this report. We recommend that a 4-inch-thick minimum, compacted, crushed rock base (CRB), consisting of 7/8-inch-minus crushed rock, be used for the roadway. The crushed rock base should be topped with a 2-inch-thick Class B asphalt concrete (AC) surface course or a 4-inch concrete reinforced pavement with a layer of welded wire fabric at mid -depth. DRAINAGE CONTROL Building Footprint Excavation Groundwater seepage is not likely encountered in building footprint excavation for the proposed residence. However. if encountered, the bottom of building footprint excavation should be sloped and ditches excavated along the bases of the cut banks to LIU & ASSOCIATES, INC. May 30, 2012 Single -Family residence L&A Job No. 12-028 Page 17 direct collected groundwater into sump pits from which water can be pumped into a nearby storm sewer inlet. A layer of 2-inch crushed rock should be placed over footing bearing subgrade soils, as required, to protect the soils from disturbance by construction. traffic. This crushed rock base should be built to a few inches above groundwater level, but not less than 6 inches thick. The crush rock base should be compacted in 12-inch lifts to a non -yielding state with a vibratory mechanical compactor. Runoff over Impervious Surfaces Storm runoff over impervious surface, such as roofs and paved driveway, shouldbe collected by underground drain line systems connected to downspouts and by catch basins installed in the driveway. Stormwater thus collected should be tightlined to discharge into a storm sewer or a suitable stormwater disposal facility. Building Footing Drains A subdrain should be installed, as required, around the perimeter footings of each of the proposed residence. The subdrains should consist of a 4-inch:minimum-diameter, perforated, rigid, drain pipe, laid a few inches below bottom of the perimeter footings. The trenches and the drain lines should have a sufficient gradient (0.5% minimum) to generate floc., by gravity. The drain lines should be embedded in washed gravel completely wrapper) in non -woven filter fabric to within about 12 inches of finish grade. The remaining trenches may be backfilled Nvith. clean on -site soils. Water collected by the perimeter footing subdrain systems should be tightl.ined, separately from the roof and surface storm -water drain line systems; to discharge into a storm sewer or a suitable stormwater disposal facility. EIU & ASSOCIATES, INC. May 30, 2012 Single -Family residence L&A Job No. 12-028 Page 18 Surface Drainage Water should not be allowed to stand in any areas where footings, on -grade -slabs, or pavement is to be constructed. Finish ground surface should be graded to direct surface runoff away from the proposed residence. We recommend the finish ground be sloped at a gradient of 3 percent minimum for a distance of at least 10 feet away from the buildings, except in. the areas to be paved. Cleanouts Sufficient number of cleanouts at strategic locations should be provided for the underground drain line systems. The underground drain .Line systems should be maintained periodically to prevent clogging. RISK EVALUATION STATEMENT The site is underlain by dense advance oumvash sand soil at shallow depth. This competent soil has moderately high shear strength, and has high resistance against slope failures. The key to maintain site stability. is to provide adequate erosion mitigation and drainage control during and after completion of construction. It is our judgment that provided the recommendations of this report are. fully implemented and observed during construction and after the completion of the development, the areas disturbed by construction will be stabilized, and will remain stable and not increase the potential for soil movement. In our opinion: the risk for damage to the proposed development and from the development to adjacent properties from soil instability should be minimal. LIU & ASSOCIATES, INC. May 30, 2012 .Single -Family residence L&A Job No. 12-028 Page 1.9 LIMITATIONS This report has been prepared for the specific application to this project for the exclusive use of Ronscott Construction and its associates, representatives, consultants and contractors. We recommend that this report, in its entirety, be included in the project contract documents for the information of the prospective contractors for their estimating and bidding purposes and for compliance with the recommendations in this report during construction. The conclusions and 'interpretations in this report, however, should not be construed as a warranty of the subsurface conditions. The scope of this study does not include services related to construction safety precautions and our recommendations are not intended to direct the contractor's methods, techniques, sequences or procedures, except as specifically described in this report -for design considerations. All geotechnical construction of the subject project should be monitored and inspected by a geotechnical engineer. Our recommendations and conclusions are based on soil conditions encountered by the test pits excavated on the site, ouz engineering analyses; and our experience and engineering judgment. The conclusions and recommendations are professional opinions derived in a manner consistent with the level of care and skill ordinarily exercised by other members of the profession currently practicing under similar conditions in this area. No warranty, expressed or implied, is made. The site subsurface conditions encountered in the test pits may vary from those actually encountered during construction. 'The nature and extent of such variations may not become evident until construction starts. If variations appear then, we should be retained LIU & ASSOCIATES, INC. May 30, 2012 Single -Family residence L&A Job No. 12-028 Page 20 to re-evaluate the recommendations of this report, and to verify or modify them in writing prior to proceeding further with the construction. CLOSURE. We are pleased to be of service to you on this project. Please feel free to contact us if you have any questions regarding this report or need further consultation. Five plates attached Yours very truly, LIU & SOCIATES, INC. U J. S. (Julian) Liu, Ph.D., P.E. Consulting Geotechnical Engineer LIU & ASSOCIATES, INC. LIU & ASSOCIATES. INC. Geotechnicel Engineering - Engineering Geology - Earth Science 'VICINITY MAP SINGLE-FAMILY RESIDENCE 18007 KAIREZ DRIVE EDMONDS, WASHINGTON TE ISM z LIU & ASSOCIATES. INC. Geotechnical Engineering • Engineering Geology - Earth Science Y,PP� cw �A ITE AND EXPLORATION LOCATION PLAN SINGLE-FAMILY RESIDENCE 18007 KAIREZ DRIVE EDMONDS, WASHINGTON I UNIFIED SOIL CLASSIFICATION SYSTEM MAJOR DIVISIONS GROUP GROUP NAME SYMBOL GRAVEL CLEAN GW WELL -GRADED GRAVEL, FINE TO COARSE GRAVEL GP POORLY -GRADED GRAVEL COARSE- MORE THAN 50% OF GRAVEL GRAVEL WITH GM SILTY GRAVEL GRAINED COARSE FRACTION SOILS RETAINED ON NO.4 SIEVE FINES GC CLAYEY GRAVEL SAND CLEAN SW WELL -GRADED SAND, FINE TO COARSE SAND SP POORLY -GRADED SAND MORE THAN 50% MORE THAN W% OF SAND SAND WITH SM -SILTY SAND RETAINED ON THE COARSE FRACTION NO.20D SIEVE PASSING NO.4 SIEVE FINES SC CLAYEY SAND FINE- SILT AND CLAY INORGANIC ML SILT CL CLAY GRAINED LIQUID LIMIT ORGANIC OL ORGANIC SILT, ORGANIC CLAY SOILS LESS THAN 50% SILTY AND CLAY INORGANIC MH SILT OF HIGH PLASTICITY, ELASTIC SILT MORE THAN 50% CH CLAY OF HIGH PLASTICITY. FAT CLAY PASSING ON THE LIQUID LIMIT ORGANIC OH ORGANIC SILT, ORGANIC SILT NO.200 SIEVE 50% OR MORE HIGHLY ORGANIC SOILS PT PEAT AND OTHER HIGHLY ORGANIC SOILS NOTES: SOIL MOISTURE MODIFIERS: 1. FIELD CLASSIFICATION IS BASED ON VISUAL EXAMINATION OF SOIL IN GENERAL ACCORDANCE WITH ASTM D2488.83. DRY - ABSENCE OF MOISTURE, DUSTY, DRY TO THE TOUCH 2. SOIL CLASSIFICATION USING LABORATORY TESTS IS BASED SLIGHTLY MOIST - TRACE MOISTURE, NOT DUSTY ON ASTM 02487.83. MOIST - DAMP, BUT NO VISIBLE WATER 3. DESCRIPTIONS OF SOIL DENSITY OR CONSISTENCY ARE VERY MOIST - VERY DAMP, MOISTURE FELT TO THE TOUCH BASED ON INTERPRETATION OF BLOW -COUNT DATA, VISUAL WET - VISIBLE FREE WATER OR SATURATED, APPEARANCE OF SOILS, AND/OR TEST DATA. USUALLY SOIL IS OBTAINED FROM BELOW WATER TABLE LI & ASSOCIATES, INC. UNIFIED SOIL CLASSIFICATION SYSTEM Geotechnical Engineering • EgIneer" Geology • Earth Selene µ PLATE 3 e TEST PIT NO. 1 Logged By. JSL Date: 3/22/2012 Ground El. i Depth tL uScs CLASS. Soil Description Sample No. w % Other Test OL Dark -brown, loose, organic, silty fine SAND, with brick fragments, moist (FILL) 2 SM/ML Light -brown to light -gray, medium -dense, silty fine SAND, trace gravel, intermixed with occasional fine sandy SILT, moist (FILL) 3 4 ------------------------------------------- OL Dark -brown, loose; organic, silty fine send, moist 5 (Ee.Ln OPSOILZ_____________ _ _ SP _ ____ Ught-brovm, dense, fine to medium SAND, trace gravel, 6 slightly moist (ADVANCE OUTWASH) 7 8 9 10 Test pit terminated at 9.0 ft; groundwater not encountered. it TEST PIT NO. 2 Logged By. JSL Date: 3/22/2012 Ground EL ± Depth t3. USCS CLASS. Soil Description Sample No. w % Other Test OL Dark -brown, loose, silty fine SAND, some gavel, locally organic, 1 moist (FILL) 2 3 4 5 --- Sm ----.---_____.—____—_,-.------------- Dark -brown, loose, organic, silty fine SAND, moist (relic TOPS0ILL__________ 6 SP Light-browm, dense, fine to medium SAND, trace gravel, slightly moist (ADVANCE OUTWASH) 7 8 9 Test pit terminated at 8.5 fl; groundwater not encountered. 10 LIU & ASSOCIATES, INC. Geotechnical Engineering • Engineering Geology • Earth Science TEST PIT LOGS SINGLE-FAMILY RESIDENCE 18007 KAIREZ DRIVE EDMONDS, WASHINGTON JOB NO. 12-02$ 1 DATE 5/20/20121 PLATE 4 Al M � o= � 7� J � s 1�= 4 0 I �- � o z roil IU Il f BUILDING SETBACK LIU & ASSOCIATES. INC. SINGLE-FAMILY RESIDENCE 18007 KAIREZ DRIVE Geotechnicai Engineering - Engineering Geology - Earth Sdance EDMONDS, WASHINGTON JOB NO. 12-028 I DATE 121/ 0012 1 PLATE 5 ,lit• allm Mimi" I: II. rn M1 Loe -1 \y -L 12 4.124.1111111 v?jvs iNnov� 3 s 3 J- v J-s :1 �nAV I = = = = m = m m m m = = = = m ® = = m IS co 1Y EEjyy ,LLIJI 3EAVIEw j (' �j..".'t a :a: • ELEMENT ol �I B tsT Jy IZA I 4J !•• CC.J ND T� 3-4 9 R-. Pti'1• 77' PO 194TF1� Q$.Yh `.\ ��'c"�_ :.) .�"`'x• # tr rr^ r}..,'...� 11 z z N 1, 5' 1 - iu. S, li� d; f - in J.0 2 1 vj-. } � 33c33333Iz3 333:3333�� E:S:3{ a3��di:ta _T 7,nAV 0, LNnov� . ... . ...... .. . z4., juis t ti 4F -Loq-1 V.L to V OD or Z d to < z CL w LU tj 9 z z i Lim 0 7— < dr 4", z 0 OL - -ME--m m an m -m m= m m m m = = do = m m m m m m m m m m m m m m m m m m m G Li `+ W ® 07' Q 0 o � d 0 d Q U z� <F- �o U= 4� --_---- 00_9 6' TYP. z r -__6'_PRIVALE WALKWAYjI O P 'u B Y ♦ M b °ob r t so:oo� W 4 w' a " ' Q bb _. M 0 0 r du •�,s 1 �i ti( D8 SW5 :1'w'•r ' 25&71 a e' ~ 2015.03 �� 144;43 1�o 2 m � sc�sFl •roof":y ooal i O'er Om ot, V qn ^N mnn d.J ON bhp fe tbti 4 LB'f6 �09 '�' M.BF.bO1pS 9L'09 V4 0 92'bF R=80.00 4� b :�YOtl 31YAItld s s mw O Nam' woa x. .0 • 9641-fi9B/SZbYY3 ' Zf40�(99p,SZ4 ' t" MBSGZ-tL096 VM 'pNOY(9�tl •�' z a 9SLZ X08 '0'd, uiN = ` tOZ 311liS '133tl15 4759; 3N bt£B.; '• P1 Or� �wO0o •uui MN Bu!Jaaul6u3MY '. owe �•. �QOQ zoo ,'�tic . ,a,te qwd------- ��w �oo. • ® :'' ",ffi�s L"a. o—o-tW--- 6 net xw 952 �o"mho cw 1,1 yx Z� cWc' �'NJJ "�'.�[�wKw a O�t=n mitt `LLt9z La�yp�a�mo SZ pr 03 pp il omm�a3g a O #ZpFmtR wr yr u y Z. Z. AV M 31YAI 4.P -( j S y p� F� :p O M'.1 g�fojw�W o i O niw>0 iz are ¢ f�v• o D, ; 4 z wius yow z� z w i i W o<v�ivao" F Q m f `wuiN � CJ � z m wz 4K z %x6zwzoc WLU \P z o `I ow-z4S .1 °o Y IS o°FAsp \�wQ G, o m is z a E 0 a \�o'y 1 9 S, w 'i asp m srs �,. n `00 m 'y000 -- — 0. — —� �\ Zl 03S 3„B£.4010M l0'f if o`'e '\ d \ 4 XK./P0. go 4� _ IL lot l WY2 ��" J' I I ♦' I t<� �''r I 35W 120.02 z ooW I •. •' � i 6N I I •ty' -' ----- a ssz9� z y o 848Sq r� - b r ✓/ r..r i Z '�.+ � r00•WBI���+� /P. ..r.r ��mn of i n Ia � _ wu m a8 of�.•'ICt.H °gsC Oti h6 `�p'::�`. •Oi+ � 31f BYL�~"..r Fc.ro< \`• ',, � V sovsvae'w r�s `\ ,y .ti. GH—Mar.+olos `\ — — — — — — — — — T J 85 P. Cif O O w0 91 nViV I rc^o z �_I nl IalEl-____ o - T xl ml 4- 1�dt 03pd,01) 34Nn ?/0 '•, di• KK,cW 3,� •~+ Za2W� G� iotn a o z_vd �.. G�, �fnnn�z G wd� G 2�o ow nr'�o'''• ° i'tb "d ' io a��zm�� o� i zou G o^ o �-z w> �w &xz w 6 ,:•�� i� ow - �^z �- �"wo owi~u w.. zzb Z2 mo zoo zrc', "�Wmbo 3 az540- c �^ww! o G U- Aiorvlzd u ao iz s €row' z Ewa 33 3 Y :, z'+zY y� y '�.'I,zw'�- H . 13Ci�#;.N- w <G oo z�`ou 0mo v� � �au�z Pm 3� �n•. 'z' 'pz••, aS z F uLS.. z`i& o G �_ :iF'z_z5 0" ci" o o m z as •"H '� sdn `Jo .x" --. nwuz�oz m xdort �33d az�a� " ^ $��a6$ kixs odor $xw ^az vxiorw i �< �'•, n�o Td� ,z:°w. °Jm w oz '�- " fY � G. G�.i�3 "� Gr .3 �-�+ sF .- m3 z ^z r z ii�'' n tt 6z�, z' z nx o� ^ omowm no �gmfl� $ 6'�4600a zoo ow= E ga zes Wpm to .00ji�'zCo. � " o�ww' g " So m�uo € 3 arm v Qa di, �,: m�UW=. ��omSz�ax o 7 �'=o^�oryF z�< 4" "ooiw�mom z"�oo�C _$ •gym :•€ " �i�.i moo "$ 9 duo.. z wtiw'x'�w �z SSw�j vsi5 d yz$w� x'^° ow xx g3��� �zgti`o �z #au a�zo h�•• o- - o�w �'m$ E m wo`-'&�mrcz gg aaLL s �roo i (L""om s -� v, s o vim so�� 3 zU zoaw 8€ 3=gog31:S 3 0 o ao sw3�0� roFwF o mo i •• o �� viu zz mbz� i znm iowoz�gvoio cwi on on i �C•=GG �a u�ntio mz az� " �n �� i S� �mza- w� 8 xz ozF��Sgz 6 o=d gfl zhwda31."-^ t � Lz zx�w 'e�'z � i•"gd... a u_Geuml.wzF �zo u"os i'i ou u �Nw mw c �0'2 mud a $G" s zo"innwi 3G zzo�-G�t3 cd m9e=^ ono uorob�nGa r oza'" 03 Gro ooz ol.•' �u �Yw N� z zaz oc x i�arz "w �w���wu.�n� `hNY� x o'z 3 t�^owz3 ooi % `0`5 < - zazzo a tir°a�rsxo "uz i U�wF a 'zn xm �z N _Lr" o'i ^3 i �t�" Z<x Lo.m =o r m oWdww' u •oG� Wa �`o'bu = G •�;'-e•,=�nSo QG� g#� 3�;,' ao'+$^3�nwo booz z3$3z xo� zG zacwi .r 33 g�z�++v� tr •? 1=ir 3'J"? o 'a5z imnanot3oo Wiw Gho gz*� u�� €� �m� ��$ a�qo& �Nom��nw�r+o r=8 o �ioJw ..3 �`3mi©w� $3 tnG� $°k $ aow^u o z�tnne�s o <^w o'Z zw h O U i y,(j3 O 6Oo bO o OZ OOWDOax .. pF ..mr „Gz o ..= Et"zzn om o: a 8mw rzowo nwm �- Wno o " m uz m mz hwwzSy i>n w ozm G zc'u c"�wh<�o wa Go m^ zmw E �W• mew= d d o z -zb am d o - ooz-m dzw dy zmz z z :quz�w m ��ff� wu z��a~1GG3 u T�m�Sza �&w :d F 3m u3x� 4 2� t0 z �w3 to o€ a OHNM � mzvo.m °zft"3 or noa wzvo�n m�c=is :- LimS "xz "ao`� o�0000mz`w' -" o"x gz� w o ar3 "o OMME"m a�3R." w a 3 m Nice-,ice.=. 4 S, LQ O z u E C, P C`D z CV 19 E- V) Z3 g Z2Z z g, w-.8 O - lz cr (L - i5 a< aZ z ')>w0 r irz zese F-- w M V 0 2'-. AE- Ul z Z =, -099 i - WE P Z z E- o w z z pq 0 pks 'I cr It E- �D En w cr xi Z, Cc, P4 con E- zo W Lu zW oar LL- ORO (D Vli2W!1150-,.:t,2� CC g '5 w 6, 9z o' z k 1- OZ ow g " !avCa �X..ggi � 0 8 Hxx ir 0 r 0 ap- IL >W Hz A E in g :) L4 w z, ORO RM uj 'z.�; I R Mo-I n z 0 < ct 6, LLJ, ( 0 U- Z 2 > ui 'CL k> 0 ji < Ur Z Lj In N U) LORI t-() 00 Q) LLJLli U) U) Lj—. 0 LL, z M (t, cc) C) z �11( I , D 0 u Q) LLJ u U) Ol 0 z z(f) z 0 2 0 1,0 9 b C\J tj 0) 4) 0 - 0- C\j ­4 4) u C\J 0a Z 0) C3 o o (D a) , o 5 LI) ci:Nuj U) o c- Q (n > lY O � � -' - I I I I a� I Wad a � o N ° ~ Y W _ ��¢ 3� i c M C1 t!) U P d N. a ,a z (� Cr- a o Z z Lo C o N 07 N c d 1- z tl C M god w QW z W W q .1 " W o 11... N �.�- LL p O 0 � o Ld • Z _ 0 a1 J Q .. �. G15 d5 Z t)� . as N i`- O� a v" 9 Wxx a UJ W W U >>� o ul Q Z . J o 3z Zli uj mg N 0 .15 m LIJ 'E w to IL tr-- 'fy 7-7r 1, - - 1, � A"R' - 1, - � 4. - - - l - - A.?L r 441' 0 CC eD !� ^,.K`w, r Y\ti .M'. \ �9:w+1,.�. .� �'N�c- � '*�`"*.• �+..-„f� \ "7K}"�""�.'i '�'�'.L."y Ile NOIDNIHSVM 'AiNnOO HSIVIOHONS UN SONOVU3 JO kilO WM "]W�J "N/Z'l '9[ '03S JO t,/LMN 't7/LMN NI 73(7 VLSIA)*aG Z3,VIVN Z0091" -�d �Jli~�JOiS NOI I N31 ]C1 NV Id H31SkS NOLN�11�30 NV LLA z Jig lu ir 6 om m TH 2 3 9 d 0 53 hn Ell oo z.. R 'Loo R OP �c\,Eg H. 1019 0 '61 Llj 'Nay Ash ML < NOiDNIHSVM '.11NnOO HSIVNOHONS C'4 SCIN0V4011 JO ),ilD Q WM -3t,'?J "N/Z'i '2L '03S JO 1,/LMN 't,/LMN NI 0 2 g ('&(7 Z3,VIV>i Z009t &G VVN 73G VLSIA) HOJ i STV130 )R S310N—NV�d 2J31~]OiS NOUN7113(l ig le Qw 00 z LO N 99 - 40 D z z 20 �-ll 2 w z 0 a LL E E3 (jt�k= o o L'i cr M a �w d 'N pQ L sp E ­U end �j W, wo, 2 UR 1 RM"W. A, a R 2 0- 6% 2w x H g. g�- 2� R 66 ps mg 161 pg� -8 q'HA" dil 4 WgWONam PA v I H §6 € I §E - g H gl F 9 Wg 8.,9! 0 0 p - �q 6S.. . . -8'a d@ W-4� p -.F-�,H - Is' H G v-� El , � 1, AP P '10,<�, z -W�l OT V, -,95 §,.Sg N Vt -pVEa<w'; �-tl up, Pg RRseWam Ow -fl%j � i "I V, , .,- " . — go ors ea x N n'- 2, In NA_H H,- m, V Wks HR, % "'y -H H2 -F, E. -;E wvq 4 pF g<-. H! 'Rn4 Hit P� W. H qR t 6H . . -- � mulj� m 0 p - N --- - v pN -M p a F fl, H WF"fl,2, "MVW o as m q 'R g,�j xa N u o H �h U m SA; H w§am WaH L �.�~ ^ f / \ . >Li :U:,) cn < -6-' C� , SO a- LIJ z > LJ IKy CD cli 0 C, A \}//) § �� /: cn \ \�//�\� /// \\\ \ /\/��«�< L4, NOiWHSVM '.�iNnOO HSIHOHONS C'4 SCNOKKI Ho )1113 IN.m "NLZ'i '9[ '3S JO t,/MN '-V/LMN NI &Vkv 73G VISIA)W Z-3cVIVV ZOORI gA �Jo-j NV]d V131S),S N011N31:10 —NVId 831VMJO1S NOliNli3G 5 LE J 9t" H4 0 q ScH, Lo UK P LOA EE 0, p .g 2 x T M� d 4H Of, 001 ow A - k ew , :MP �V 9A� o-o Ld J 2 KS, jv A 411- 41� NQ LLJ 0 aas 3: -y 31t SAN/ m LLJ R 7 1 F S J } ..� r O L •--i lL UGi OW Wes•;-L I- C�) U H i F L W U O U W W� �l7 qa rri� C*'iz OWF HU c" -L�eJrP w J 1 F J C') ? n R r 2 ~ q w ¢< !w uF�W Pa L'- C'l i L � F WN- OLd SUER � Sz J'r?W J L7� JG�R = Qu�cz WSJ T¢Ww}O C,) iJ W BUJ QUC(n w 3~ En y L!F`U pQ'W v Lv V1�F 4wu C zR .z uo �WzW ar-W`'� OR4O �!- FS L) UREl >- zGU� F J Q F J CL O UR ,!NSW UEDM3 JZ�UW �U WC1 w o- z C O L J 2=< vter= D QOJFWC�'Jz icz �ZL�i_ W pJ0 F- 4�_ Q Nv G. "-1-� U U (U 1r-[`7y U1:LJ Fa0 I < oI uil�2 i' T, �� I a f LU a� ao¢wLo NO —fwUm0 J o W F — Q Q�vsi , w� � Uzc v En. ¢ uj f.� z �v N• N •~-• Oa aDU -' N L LNa t +v N 4u• - `•.J;\c 00 LNC a'oa tCmo `U V CD > a4-E E._ -�- O DNoOtl -UCNC P..•r.1 -O, ueo oe r< a aN- va t a =Nc0 �^X, -O -C7 vc 0 C 'O ?XNLOv O_p �i - 0 +N c0 Nrr i-7 }+uOL L 0 C t�0 - CO pam ° v - vvvF.0-60+. i N CC OLO.00 - F ; 0 O Sc t cr13 J J O}pO Vv OO�C C. L L L X} yi yi O X O V O N vLra J VI-` ^ V W 9 >LLUcO •O C N a01 v O v'C L O: Dc m oa C C •b-"t"'•-GO b-v o -F L L •- O�Fp N L'J . L; V ~ aw o0 N--} ou0 n, - H T 71 9 L Q N 7 0 O V L d v a `• a W < G C 0 V V + C O M +- L, L LL L QI N- N J -v v Om v 0 O .> - T v O _ V Oc:L V'_.L- ON CD O L: L C C N O V- [ p •- O COO i c 'a P i q,,, ,f p -� p inr NCE D D} X tl �- No ND !- - O. o- 0- irmn NNNN --n[r. --•tl- VvOOE W-C,,L•-L tD +LNU. 0LL p, C. LL Cc U ' L L�-NO`O- CO7 L 04- a O 0.{ � C}-OLaV Vv0tlLo+C °d -}vOv CWvOL] a-2E- V va+ "VOv- -O0N0 (UfIO }0L LvC L+L LUV.-2v- 'L+NL L .L�CD-UL_ .�•^C_ -_LO1U-O E O v CN + NL -oC GJ N O00. GGOCL< . O CG C c C Ni a 0 U' V a OUO - O +L'rOUi- J+ 'C V 00vOLN. LC v0 UN Ci CUg O O. VCL -'a-71 'o v LA C LLV Oa -c E cU VC u c 0 a 0 C- OTOva C0C U O O- L L+ 00 0 O - O C 3 7 'yO o L- + n m m +- U-v .. ••.ivO--.. cv N a o ci y - (n v O v 0 'O N N •_ O'._ V O +-- E •- N L t N -•-g 0es:���� CL U 1-7I o n ° a II Lil >dl D E oc y L „bl g a>_O,y puo v a I qol Gas NN o c L+X :_ C L �xL +o+ d l V UQ Q ^N r LSL i fpp6 jE�O ON O pm� W �C WDEW N f0 V.CmO.- o�mwp LCa.c t L .m .mC-9:!�Ow Ig aS.c`ocm= momrn J u�W"R' m2 $ O. d O B. Ei3 C�OL 3 wpr z 9�a w m w Jm2aB Jmm-- t0 �mv a WW.,w c LL�mmSH Ix-@ W o'�Ec �8mo o m.9 Lq P. W�}E2co mM °? cm.c y m c umiv of W h m oiam H'+o-'a ;Z` m W,mp-NN ma'c�e c�.3mnL° w am m ¢r��aa cm �mC0i0(p n,0` -oo�•f°� Wm3��W(9.�mcmmigqm "w moWWa 'Fi e C9W E_ Lm o� W�� o �v m mU%wtimc@ rn� a m V W C 0 o- c 'm C So�i OR. cc mio F IL 5= =--�' •-mac li�c N P') `S Ld m n LL /00 o- J LLJ W. H O �F O w 10 d a 1-1340n NE3J *AS WV'dG .0 O v W Z o. r IL w alum a d IL ' o 'g O < $ W � ' z � w o w z J� ow m W w m a °' �_- �a5 lrl xoz:I a5=� ¢z¢o CI �Z<6 z<J6 Wz �aoQi .aoo= oft z k�aw m3�o a'Sz �_�� w�Nw m.`wc�= wWnrmia utmnN0 zF3 S�ww �mw� „mom �, omm � N. m } _ J ~ �m mw 'J 2 !9m O U e� z �d ko N O ❑m WC WK IL Wt^ m UX U'W 5 fJ N� I Oam� x z�J z Z z mUaq V J I I I I ui ui _ I _ I F n I I ZKOZ �OiV w Oy UW�m «Z/Lb Om oZ ZaCD 5 FV !NM mon Fo=O Oa wok V Z Q a� ask x � m V NX J - Ot m y � F a ;1 � W J W J a U I T134aL1 NU3J 'AS WAVUa 0! b I5 �ar�rmn a a gas eee�ers rmr p , F. 0 Yi Yc N o 0 w 5 � o � R 3 V T 7 O m e ? W Q oa N asp oQoou,�, a=m Z <� ZaJw Zto N o0. R h .&L NOi9NlHSV/v\ '),INnOO HSIV40HONS E N e�, SONOIN(13 JO kilO 0 "3t'd "NZZ'i '2t '013S AO tr/LMN 'i,/LMN NI WG Z381 V.V Z 7TUWky 73(7 VISIA) SlIVIK V S310N—NVld 631~dOiS NOUN3130 I z 0 Nz zp om 00, < z z oaf a 0 z < v Ug z o 2 z 0 qj� LLJ W UV Ma o �g .1 R Li af CO x b-. El 0 z 12 4 0. z S T t L C7 8 8 i u n m gY `Sgppg nam 3 H 3 -1 6 -a 5, n N -HR A i H 4,p V6 g J W H, -9 .€u 15 ORR spp EW m P�oLLoF has R H I IV I- 6,1 iG --N fiM g Hq gs H 2j�A OK , 4 au � E , - - *, ekn; L yu, ad,� fi �-' �-' 11 E. -, "' ; I -� 0 1 H5 PH p h WW; iV 0 ft �n Gioflop Rq 0 Jo a RX ozp mv m v X62 R M- N gg� M- 8F ag-CH HN '-19.- p .5Nb N ................................. s ass '=Ni aor�s VN s 9ZO96 NOiDNIHSVM `SONOW(]3 z ns ,.. ann nv Hiss. ��I53J `)NIC]ll1' 'O HVV4 130 VISIA ZI 101 3ft180 atlVV 130 `d1SlA LOO8l s 83I13M 131NVQ 'ON `N0uona1S wg y PO 11 OSNOa m ��s3EUJ s oz f mz IS i r J 1 _ I e / f $ a MP v S% s Les Z'M'WUNCNs 9Z086 N01E)NIHSbM `SaNOW(33 ZOl 31 (1S ?N 3f1N3fib NLSt £ttt� Z aVw 130 V1siA `zG log � 83113M 'D 13INba 3AIao atiw IM VISIR Loom w oz= <3NI "NOI I ona1SNOO 1100SNoa N „a 1° LU g 3 {A` , LL. 0 °z LU Ii( Wei r AllI >i i FN / �`I so= 7T)n ti >� �ssu K Q \� n } C/D 3G ZStt-t 8 {9CG: 9ZO NOlJ SVM `Sa NOIVN Va4 ^" CO t86 tiM `3t l3NOH5 ��t iLltiS N jnNv-1 t £tLLt i "- - >19113M D 13INVG 31\Itla UM b1SIA L00$L O'II NOIlOn8iSNOO 11OOSNO8 To vA / (vj f 46 t t F/ t Q,� l 4 ' t �) _' _Atij,O CIO Ei��. < ",/ t t co 2 j ,j A Z8tl—t4B i90Z) Emu, 570$6 NOIJNIHSHM 'SaNOV(73 1 mA 3v3FINnV His'sLM mull, HVIN 13Q VISIA `ZL 101 ANOISIG ONIC]TnO 83113M 'E) 131NVO 3AIU(3 HXW 130 ViSIA LOOSL a� `NOuonHlSNOO _ 'ONI 11OOSNOU _ ZStt-tS8 #� 8s M'3NI�kOHS 9ZO96 NOIJNIHSVM `S4NOWO3 zot 3iirs an nn na ti�at Etcc: j vvy 1aQ VISIA 'ZI. 10-1 ........ 831 M ni 1NVO 3AIdG 8Vw 130 V1SIA LOM qc a� 1 ISM 'J 13INdfl •ONI `NOIlONa1SNOO L10OSNO8 i fill i i log L_J / fto�' aa9 A imq s f o a o m�� 5fl I � w s 1 e � jIN 1. MIMI 77 co �j 0 tiY1 �f 09 UD I� H