Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
_BLD20170041_Supplemental Structural Calculations.pdf
COUGHLINPORTERLUNDEEN ?,SSU,C.TI'RAL. CPViL SEISMIC Ct GH, ',EFRItd,".; CALCULATIONS MADRONA SCHOOL REPLACEMENT 4/.i4/17 Mahlum Architects April 14, 2017 S 130282-01 PREPARED BY: Laura Nettesheim Rachel Vranizan, P.E. Jason Whitney, P.E. Kelly Lowe 80 € SP:,i. OND AVENUE, SUITE 900 SF,`E1 3 L,E, WA 98104 P 206�s . %.C't 4t.•i; .' ,.ra.€r,c:,;:r,�tra ... ERLUNDEEN `„Tr"e,1..sC T URAL.. Cl o SC. ;�, 11.;; :i ,I ,: t: t. t�.%7 s:= MISCELLANEAOUS 8,01 SECOND AVENUE, SUHTE 900 SEATTLE, VIVA 9810,1 / F, c;r i343,04!6O ; ;..dt,.c,com ... ERLUNDEEN `„Tr"e,UC T URAL.. Cl o SC. ;�, 11.;; :i ,I ,: t: t. t�.%7 s:= MISCELLANEAOUS FOLDING PARTITION BRACE DESIGN 301 ,.f%t.,ONE.; s^tVt.N,.(E, S 3E(E 900 Sc.,"f`i�h �?. :?t��E;�1 s fir„ � r' � ,. ,asp ���.{ �?.h,� t�(,'s C.,', Ca t'ri r M 1 '�' STRUCTURAL CIVIL SEISMIC ENGINEERING Project; r�.: Designed By: ""°� Dater Project No. Client: Checked By: Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 t P 2M343.0460 1 cplinc.com M-2 MISCELLANEAOUS SHEAR WALL MM-NS/5 DESIGN UPDATES COUGHLIN PORTER LUNDEEN STRUCTURAL • CIVIL • SEISMIC ENGINEERING N 5 shear Shear Wall Names - Area M M, NS the . A�1 MEGH'L UNIT 2 MAX. WT. = 1501 MEGH L 1291 12 MAX K 10# n l 5-E02 5ro'02 HUG HANGER - L wwDERAMED PLATFORMS BEL MEG L UNTS �—� AID N MECM MAXHWLTUN 2 400# UNIT J��.,, - MAX. N MAX. p{T. = 3,000 MEGH IT P= moor �� � %X12 2 MECH'L UNIT MAX. WT. = 2,400# i 5-602 VcXDFRAME �J1 1 J2 A , J-4 i l— 4" HOUSEKEEPINE .LATFoRM58ELOw n I MEOH'L UNITS n WCO i , PAD 5TAIR!FER4,5-F,02 , m D'e5i6N P71LD STAIR?ER - (2)2Xb [H] _ 2xb E ib cc PLAN NOTE 10 MEGH'L UNIT BEAM PER 4 ` 5 I vL 3Lax12 J-2 ni B' MAX. Kr. = 4,200 5-12 1 D A dE00T PEI ; ( LEVEL BE ' B 2 , A1�2---------------- I m 4 I BEAM5 PER PLAN 4 NOTE 9, TYP. U.O.N. ------- --- MEGH'L UNIT ,,p, pl ^ems MAX. YC = 2,400 FLOOR SHEATHING PER PLAN NOTE T, U.O.N. iD 109'-6" 2 4��# 4 Hd �.., cJ-4 JNOTE5,U.0N. 12-s-- 5HEAR WALL PER 1/5-201 ------------- M4NALL5 ----------------- M,000# ApDgl 2 �H� 4vC516RT.5TRUD FACE(ALTTPART WALL5 GL 31/,X12 —/ Project: Madrona K-8 Designed By: LAN Date: Project No: Client: Checked By: Sheet: 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343.0460 / cphnc.com M-4 AREA MECH MEZZ - NS FOR SHEAR WALL AND DIAPHRAGM DESIGN In this direction, there is a flexible diaphragm. �= 1 �= 1 Ax = 1 < There is no torsional irregularity. Base shear = 19.3 kip Diaphragm force = 36.2 kip Overall area = 2916.0 sf Distributed force = 6.6 psf, for a shear wall 12A psf, for diaphragm Force (plf) Span Trib Width (ft) Length (ft) Shear Wall Diaphragm 1 (Left) 17.8 38.6 117 220 1 (Right) 17.8 38.6 117 220 2 (Left) 17.8 40.9 117 220 2 (Right) 17.8 40.9 117 220 3 (Left) 45.3 21.1 300 562 3 (Right) 45.3 21.1 300 562 4 (Left) 45.3 10.8 300 562 4 (Right) 45.3 10.8 300 562 Line Sum (kip) 1 2.3 2 4.7 3 5.6 4 4.8 5 1.6 Wall Load (kip) Length of Wall (ft) MM-NS/1 2.3 9.00 MM-NS/2 4.7 17.33 MM-NS/3 5.6 22.25 MM-NS/4 4.8 16.92 Diaphragm N/S SW Force (kip) Length (ft) Trib Width (ft) MM-NS/A West 0.0 0 0.0 East 4.2 17 19.3 MM-NS/B West 4.2 17 19.3 East 4.5 17 20.5 MM-NS/C West 4.5 17 20.5 East 5.9 30 10.5 MM-NS/D West 5.9 17 10.5 East 3.0 17 5.4 MM-NS/E West 3.0 10 5.4 East 0.0 0 0.0 FOR DEFLECTION CHECK Use the same loads used for design for deflection check. Force (kip) Shear Wall Diaphragm 2.3 4.2 2.3 4.2 2.4 4.5 2.4 4.5 3.2 5.9 3.2 5.9 1.6 3.0 1.6 3.0 M-5 Madrona K-8 LAN 3/27/17 AREAS 3-7 AND AREA M M SHEAR WALLS THAT TAKE LOAD FROM MULTIPLE AREAS Load (kip) Wall Total Load (kip) Area 3 Area 4 Area 5 Area 6 Mech Mezz B34-NS/1 66.8 4.8 3.5 0.0 0.0 75.1 B46-NS/1 0.0 12.0 2.3 14.7 0.0 29.0 MM-NS/3** 0.0 12.0 2.3 14.7 5.6 34.6 B46-NS/2 0.0 6.9 1.2 8.7 0.0 16.8 MM-NS/4*** 0.0 0.0 0.0 9.4 4.8 14.2 B34-EW/1 6.9 16.8 0.0 0.0 0.0 23.7 B3-EW/3 14.9 0.0 4.0 0.0 0.0 18.9 B4-EW/1 0.0 8.1 1.1 0.0 0.0 9.1 B4-EW/2 0.0 12.9 2.0 0.0 0.0 14.9 MM-EW/3**** 0.0 8.1 1.1 0.0 2.9 12.1 MM-EW/4***** 0.0 12.9 2.0 0.0 5.5 20.4 MM-EW/5****** 0.0 0.0 0.0 16.8 6.4 23.1 **B46-NS/1 distributes the load to MM-NS/3 ***B6-NS/1 distributes the load to MM-NS/4 and MM-NS/5 based on stiffness ****B4-EW/1 distributes the load to MM-EW/3 *****B4-EW/2 distributes the load to MM-EW/4 ******B6-EW/4 distributes the load to MM-EW/5 M Project: Madrona K-8, Areas 3-7 and Area MM Date: 3/27/2017 (Areas A and B) Engr: LAN Shear Wall Number V9w L9w ycw 10d DCR ki s (ft) (plf) Shear wall Mech Mezz North -South MM-NS/1 2.3 9.00 252 W6 0.51 MM-NS/2 4.7 17.33 270 W6 0.55 MM-NS/3 34.6 22.25 1553 2 3 0.81 MM-NS/4 14.2 1& 2 "" 837 W2 0.68 East-West MM-EW/1 2.0 M83 185 W6 0.38 MM-EW/2 1.9 %58 180 W6 0.37 MM-EW/3 12.1 1833 657 W3 0.68 MM-EW/4 20.4 25.25 806 W3 0.84 MM-EW/5 23.1 30.58 756 W3 0.79 M-7 Madrona K-8 MM-NS/5 Designed By: Date: 3/27/2017 C0IJGHLIN PaK'T"ERLtJNDEEN Project No.: Client: Checked By: Sheet: 1 of 1 Shear Wall Holdown Design - Based on Loads Imposed sps 0.84 h 1.00 Roof Trib to Wall i0.00 ft Roof DL 16'.. psf Roof LL 60 psf Wall Weight i 8 psf Weight Wall Length 15 it f1 0.5 Max Trio to consider: ft Trib to Holdown Used: 0 ft LRFD Tension and Load At Top ofWall Total ASD Tension Total ASD Compression Load Holdown Tension Holdown Max Level Floor Height (ft) SW Type (LRFD, kips) Compression Force - EQ Load (kips) (kips) Holdown Type Capacity (kips) Deflection** ONLY (kips) Roof 12.00 W4 4.64 6.12 -4.1 4.8 HDU8-SDS2.5 (3) 6.765 0.050 Verify HD works = YES is Note: Holdown values are based on theallowable shear wall capacity rather than the actual demand from the analysis. This is a conservative approach intended to simplify the design and also to ensure that the holdowns are proportioned correctly to develop shear yielding in the wall. These values can be reduced if a conventional analysis is used. The anchorage force is determined based on thcexpected capacity of the wall, which is set equal to 1.5 times the nominal wall capacity. ** This deflection is not the max deflection directly from Simpson. The maximum deflection from Simpson is ratioed based on how much of the HD capacity is used. ,1' Q Project: Madrona K-8, MM-NS/5 t Designed By: LAN Date: 3/27/2017 COUGHLINPORTEPLUNDEEN Project No.: Client: Checked By: Sheet: 1 of 1 Shear Wall Deflections ALL l PUTS LRFD ...................................................... PLY or OSB? PLY Fc perp 625 Wood E 1600 Wall Length 10.08 ft ASD (in) LRFD (in) HD Deflection Lin 0 0,050 1 0.07 HD Wood Area Recommended Level Wall Length (ft) Floor Height (ft) LRFD Wall Load (plf) Wall Type Ga (k/in) (in2) HD Wood Area Wall Load, LRFD (k) (in2) Roof 10.08 12,00 460 W4 17 16 16 4.64 SDPWS Deflections Cumulative Bending Cumulative Shear Cumulative Holdown Total Cumulative Cumulative Deflection with Allowable Drift Ratio Level Deflection (in) Deflection (in) Deflection (in) Deflection (in) Cd/1e (in) Story Drift (in) Drift Ratio (in) Drift Ratio Acceptable? Roof 0.025 0.324 0.084 0.433 1.38S 1.385 0.010 0.015 YES 7 &I ... ERLUNDEEN `„Tr"e,UC T UCAL.. <.Cl o SC. ;�, 11.;; :i ,I ,: t: t. t�.%7 s:= MISCELLANEAOUS SHEAR WALLS B6-NS/6 AND B6-NS/7 DESIGN UPDATES M-10 ';/ COUGHLIN PORTER LUNDEEN STRUCTURAL • CIVIL • SEISMIC ENGINEERING Shear Wall Names - Area 6, NS Madrona K-8 Designed By: LAN Date: Project No: Client: Checked 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343.0460 / cplinc.com Sheet: M-11 AREA 6 - NS FOR SHEAR WALL AND DIAPHRAGM DESIGN In this direction, there is a flexible diaphragm. Ax = Base shear = Diaphragm force = Overall area = Distributed force = Span CL 1 (Left) 1 (Right) 2 (Left) 2 (Right) 3 (Left) 3 (Right) CR Line 1 2 3 4 Wall B46-NS/1 B46-NS/2 B6-NS/1 B6-NS/2 B6-NS/3 B6-NS/4 B6-NS/5 1 1 1 86.8 108.9 15762.0 5.5 6.9 Trib Width (ft) 102.0 181.8 181.8 169.3 169.3 101.7 101.7 23.3 Sum (kip) 23.4 37.5 26.2 5.7 Load (kip) 14.7 8.69 10.89 5.01 10.99 4.59 6.02 < There is no torsional irregularity. kip kip sf psf, for a shear wall psf, for diaphragm Length (ft) 11.9 33.3 33.3 44.8 44.8 19.0 19.0 2.8 Length of Wall (ft) 22.25 16.92 40.00 25.25 40.25 24.08 28.00 Force (plf) Shear Wall Diaphragm 562 705 1001 1256 1001 1256 932 1170 932 1170 560 703 560 703 128 161 Force (kip) Shear Wall Diaphragm 6.7 8.4 16.7 20.9 16.7 20.9 20.8 26.2 20.8 26.2 5.3 6.7 5.3 6.7 0.4 0.5 < refer to Shear Wall Loads - For Multiple Shear Walls in a Line < refer to Shear Wall Loads - For Multiple Shear Walls in a Line < refer to Shear Wall Loads - For Multiple Shear Walls in a Line < refer to Shear Wall Loads - For Multiple Shear Walls in a Line < refer to Shear Wall Loads - For Multiple Shear Walls in a Line < refer to Shear Wall Loads - For Multiple Shear Walls in a Line < refer to Shear Wall Loads - For Multiple Shear Walls in a Line Diaphragm N/S SW Force (kip) Length (ft) Trib Width (ft) A6-NS/A West 8.4 30 11.9 East 20.9 32 16.7 A6-NS/B West 20.9 65 16.7 East 26.2 92 22.4 A6-NS/C West 26.2 138 22.4 East 6.9 20 9.5 A6-NS/D West 6.9 20 9.5 East 0.0 0 0.0 FOR DEFLECTION CHECK Use the same loads used for design for deflection check. ZMA Madrona K-8. Area 6 NS Line 3 LAN Shear Wail Loads - For Multiple Shear Walls in a Line Wall I.D. Length Quantity 86-NS17 86-NS18 12:9 129 1 1 NIA 0.0 0 NIA 0.t1 0 N/A 0,0 0 N/A 00 0 ............................................................................ Walls Information Level Height (IT) LRFD Total Load to Line of Walls (k) Area 6 12.0 26.2 NIA O0 0.0 NIA 0.0 0.0 N/A 0.0 0.0 N/A U 0.0 PLY or OSB? PLY FFc Pena b25 lWood E ( 1600 Cd 4 Date: 3/27/17 RESULTS Length: 12.92 ft No. of Walls this Lengh, I \ Load per .If (k) Load per wall (pit) LRFD SW capacity (pit) Type DCR y Z 1110 1014.19 1470.00 r sr r, t ,tty 0.69 OAO OAO 490.00 nr L£ s 4t m 0.00 0.00 490.00 t L{ i ki}Jr$ lit ODO MID 490.00 }rt 0.00 0.00 490.00 I xl1 4 s'idu'1kid Length: 12.92 ft No. of Walls this Length: I Load per wall (k) Load per wall (pit) LRFD SW capacity (pit) Type DCR y 1110 1014.19 1470.00 4Ft112„y? is,7>, ';� 0,69 Z MID OM 490.00 m 0.00 0.00 490.00 tktt�t ,tb,r;4 7 , 0.00 DO0 49000 sr i t11 riritp! t,.+, �i;• f 0.00 0.00 490.00 Length: 0.00 IT No. of Walls this Length: 0 Load per wall (k) Load per wall (pit) LRFD SW capacity (pit) Type DCR Q 0.00 0.00 490NO !! {{ Z MID DO0 490.00 0.00 0.00 490.00 MO MID 490.00 0.00 0.00 490.00 25 Fr7 L)'.�{p Length: 0.00 It No. of Walls this Length: 0 Load per wall (k) Load per wall (pit) LRFD SW capacity (pit) Type DCR �( 0.00 0.00 490.00 yy 2 6.00 0.00 490.00 0.00 0.00 490.00 MO MO 490.DO t 4i,i ri 0.00 0.00 490.00 r r i 4itae, y Length: 0.00 It No. of Walls this Length: 0 Load per wall (k) Load per wall (pit) -RFD SW capacity (pit) Type DCR �( 0.00 0.00 490.00 ; Z OM OM 49000 0.00 0.00 490.00 OOO 000 490.00 4 0.00 0.00 490.00 Length: 0.00 It No. of Walls this Length: 0 0 Load per wall (k) Load per wall (pit) -RFD SW capacity (pff) type DCR �( 0.00 0.00 490.00 2 0.00 0.00 490.00 0.00 0.00 49000 tj(kf MO MO 49000 S 0.00 0.00 490.00 rr r {ri'}rnti(1 i J M-13 Project: Madrona K-8, Areas 3-7 and Area MM Date: 3/27/2017 (Areas A and B) Engr: LAN Shear Wall Number V9w L9w ycw 10d DCR ki s (ft) (plf) Shear wall Area 6 North -South B6-NS/1 10.9 40,00 272 W6 0.56 B6-NS/2 5.0 25,25 199 W6 0.41 B6-NS/3 11.0 40.25 273 W6 0.56 B6-NS/4 4.6 24.08 191 W6 0.39 B6-NS/5 6.0 2&00 215 W6 0.44 B6-NS/8 5.7 19.75 288 W6 0.59 East-West B6-EW/1 21.4 44.58.' 479 W4 0.65 B6-EW/2 4.0 17A7 235 W6 0.48 B6-EW/3 25.1 40.58 ' 617 W4 0.84 B6-EW/4 16.8 30.58 548 W4 0.75 B6-EW/5 19.6 32,58 601 W4 0.82 Shear Wall Number V9W -L-9w -VW 10d DCR ki s (ft) (plf) Shear wall Area 7 North -South B7-NS/1 15.2 22.67 671 W3 0.70 B7-NS/2 8.0 M58 262 W6 0.54 B7-NS/3 8.0 30.58 262 W6 0.54 B7-NS/4 6.4 2615 238 W6 0.49 B7-NS/5 9.9 10.00 990 2 4 0.67 B7-NS/6 5.6 8,42 666 W3 0.69 East-West B7-EW/1 16.0 32.58 ' 491 W4 0.67 B7-EW/2 11.1 14.83 745 W3 0.78 B7-EW/3 11.1 14.83 745 W3 0.78 B7-EW/4* 14.9 12.58 1182 2 3 0.62 *upsized for drift M-14 Madrona K-8 66-NS/6 Designed By: Date: 3/27/2017 C0IJGHLIN PaK'T"ERLtJNDEEN I l . r .1 I'll l l V i `. - I `-111 Project No.: Client: Checked By: Sheet: 1 of 1 Shear Wall Holdown Design - Based on Loads Imposed sps 0.84 h 1.00 Roof Trib to Wall 23.08 ft Roof DL 16 psf Roof LL 28 psf Wall Weight 12 psf Weight Wall Length 1' 6 it f1 0.5 Max Trio to consider: Ift Trib to Holdown Used: 6A583333 ft LRFD Tension and Load At Top ofWall Total ASD Tension Total ASD Compression Load Holdown Tension Holdown Max Level Floor Height (ft) SW Type (LRFD, kips) Compression Force - EQ Load (kips) (kips) Holdown Type Capacity (kips) Deflection ONLY (kips) Roof 12.00 2W4 13.10 14.03 -8.2 14.1 HDU14-SDS2.5 (7.25) 14.39 0.101 Verify HD works = YES is Note: Holdown values are based on theallowable shear wall capacity rather than the actual demand from the analysis. This is a conservative approach intended to simplify the design and also to ensure that the holdowns are proportioned correctly to develop shear yielding in the wall. These values can be reduced if a conventional analysis is used. The anchorage force is determined based on thcexpected capacity of the wall, which is set equal to 1.5 times the nominal wall capacity. M-15 Madrona K-8 66-NS/7 Designed By: Date: 3/27/2017 C0IJGHLIN PaK'T"ERLtJNDEEN I l . r .1 I'll l l V i `. - I `-111 Project No.: Client: Checked By: Sheet: 1 of 1 Shear Wall Holdown Design - Based on Loads Imposed sps 0.84 h 1.00 Roof Trib to Wall 13.58 ft Roof DL,. 16 ,''.. psf Roof LL 28 ,: psf Wall Weight 12 psf Weight Wall Length 1' 6 it f1 0.5 Max Trio to consider: 14 :. ft Trib to Holdown Used: ! 8.4583333 ft LRFD Tension and Load At Top ofWall Total ASD Tension Total ASD Compression Load Holdown Tension Holdown Max Level Floor Height (ft) SW Type (LRFD, kips) Compression Force - EQ Load (kips) (kips) Holdown Type Capacity (kips) Deflection ONLY (kips) Roof 12.00 2W4 13.10 14.03 -8.7 12.4 HDU14-SDS2.5 (7.25) 14.39 0.107 Verify HD works = YES is Note: Holdown values are based on theallowable shear wall capacity rather than the actual demand from the analysis. This is a conservative approach intended to simplify the design and also to ensure that the holdowns are proportioned correctly to develop shear yielding in the wall. These values can be reduced if a conventional analysis is used. The anchorage force is determined based on thcexpected capacity of the wall, which is set equal to 1.5 times the nominal wall capacity. ** This deflection is not the max deflection directly from Simpson. The maximum deflection from Simpson is ratioed based on how much of the HD capacity is used. Project: Madrona K-8, B6-NS/6 Designed By: LAN Date: 3/27/2017 COUGHLINPORTEPLUNDEEN Project No.: Client: Checked By: Sheet: 1 of 1 Shear Wall Deflections ALL l PUTS LRFD ...................................................... PLY or OSB? PLY Fc perp 625 Wood E 1600 Wall Length 12,92 ft ASD (in) LRFD (in) HD Deflection Lin 0 0.101 0.14 HD Wood Area Recommended Level Wall Length (ft) Floor Height (ft) LRFD Wall Load (plf) Wall Type Ga (k/in) (in2) HD Wood Area Wall Load, LRFD (k) (in2) Roof 12.92 12.00 1014 2W4 34 16 16 13.10 SDPWS Deflections Cumulative Bending Cumulative Shear Cumulative Holdown Total Cumulative Cumulative Deflection with Allowable Drift Ratio Level Deflection (in) Deflection (in) Deflection (in) Deflection (in) Cd/1e (in) Story Drift (in) Drift Ratio (in) Drift Ratio Acceptable? Roof 0.042 0.358 0.131 0.532 1.702 1.702 0.012 0.015 YES M-17 Project: Madrona K-8, B6-NS/7 Designed By: LAN Date: COUGHLINPORTERLUNDEEN_ Project No.: Client: Checked By: Sheet: 1 of 1 Shear Wall Deflections ALL l PUTS LRFD ...................................................... PLY or OSB? PLY Fc perp 625 Wood E 1600 Wall Length 12,92 ft ASD (in) LRFD (in) HD Deflection Lin 0 0.107 0.15 HD Wood Area Recommended Level Wall Length (ft) Floor Height (ft) LRFD Wall Load (plf) Wall Type Ga (k/in) (in2) HD Wood Area Wall Load, LRFD (k) (in2) Roof 12.92 12.00 1014 2W4 34 16 16 13.10 SDPWS Deflections Cumulative Bending Cumulative Shear Cumulative Holdown Total Cumulative Cumulative Deflection with Allowable Drift Ratio Level Deflection (in) Deflection (in) Deflection (in) Deflection (in) Cd/1e (in) Story Drift (in) Drift Ratio (in) Drift Ratio Acceptable? Roof 0.042 0.358 0.139 0.539 1.726 1.726 0.012 0.015 YES J`t R.Q ljf .' fFf Frf fr.. f f, MISCELLANEAOUS F 'f SHEAR WALLS B7-NSI5 DESIGN UPDATES:'% r, 3 } € SECOND 1'NNUE, `,,;Ul'rE 900 SEATTLE, WA 9810'9 ,` ;- 206,34w 0460 f t p (inc,' orn M-19 COUGHLIN PORTER LUNDEEN STRUCTURAL • CIVIL • SEISMIC ENGINEERING Shear Wall Names - Area 7, NS Madrona K-8 Designed By: LAN Date: Project No: Client: Checked 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343.0460 / cplinc.com Sheet: M-20 AREA 7 - NS FOR SHEAR WALL AND DIAPHRAGM DESIGN In this direction, there is a flexible diaphragm. Ax = Base shear = Diaphragm force = Overall area = Distributed force = Span CL 1 (Left) 1 (Right) 2 (Left) 2 (Right) CR Line 1 2 3 1 1 1 53.1 66.6 9550.0 5.6 7.0 < There is no torsional irregularity. kip kip sf psf, for a shear wall psf, for diaphragm Trib Width (ft) Length (ft) 67.9 11.5 86.25 45.3 86.3 45.3 102.4 40.4 102.4 40.4 104.3 6.9 Sum (kip) 15.2 22.4 15.5 Force (plf) Shear Wall Diaphragm 377 474 479 602 479 602 569 714 569 714 580 728 Force (kip) Shear Wall Diaphragm 4.3 5.4 10.9 13.6 10.9 13.6 11.5 14.4 11.5 14.4 4.0 5.0 Wall Load (kip) Length of Wall (ft) B7-NS/1 15.2 22.67 B7-NS/2 8.02 30.58 < refer to Shear Wall Loads - For Multiple Shear Walls in a Line 137-NS/3 8.02 30.58 < refer to Shear Wall Loads - For Multiple Shear Walls in a Line B7-NS/4 6.37 26.75 < refer to Shear Wall Loads - For Multiple Shear Walls in a Line B7-NS/6 5.60 8.42 < refer to Shear Wall Loads - For Multiple Shear Walls in a Line Diaphragm N/S SW Force (kip) Length (ft) Trib Width (ft) A7-NS/A West 5.4 67 11.5 East 13.6 86 22.7 A7-NS/B West 13.6 78 22.7 East 14.4 78 20.2 A7-NS/C West 14.4 103 20.2 East 5.0 49 6.9 FOR DEFLECTION CHECK Use the same loads used for design for deflection check. M-21 Madrona K-8. Area 7 NS Line 3 LAN Shear Wail Loads - For Multiple Shear Walls in a Line Wall I.D. Length Quantity i 67-NSj5 V-NSjd 10.0 84 1 1 N/A 0,0 0 N/A 0.0 U N/A 6,o 0 N/A 0.0 0 ............................................................................ Walls Information Level Height (IT) LRFD Total Load to Line of Walls (k) Area l 12.0 15,6 NW, 00 0.0 N/A 0.0 0.0 N/A 00 0U N/A 0,0 00 PLY or OSB? PLY FFc Pena bS5 lWood E ( 1600 Cd 4 Date: 3/27/17 RESULTS Length: 10.00 ft No. of Walls this Lengh, I h Load per .If (k) Load per wall (pit) LRFD SW capacity (pit) Type DCR y Z 9.90 989.75 1470g0 r sr „�} tty 0.67 Og0 Og0 490.00 Og0 Og0 490.00 itJIL 1:f=4`r) MID MID 490.00 Og0 Og0 490.00 Length: 8A2 ft No. of Walls this Length: I ,o Load per wall (k) Load per wall (pit) LRFD SW capacity (pit) Type DCR y 5.60 665.64 960.00 1( 14k yr%,. 0.69 Z t� OM MID 490M tr I t3 l Og0 Og0 490.00 O00 MC, 490g0 OM 000 490.00 Length: O.00 IT No. of Walls this Length: 0 Load per wall (k) Load per wall (pit) LRFD SW capacity (pit) Type DCR Q Og0 Og0 490g0 !! {{ Z MID Og0 490.00 0.00 0.00 490.00 MO MID 490M 0.00 Og0 490.00 Length: 0.00 It No. of Walls this Length: 0 Load per wall (k) Load per wall (pit) LRFD SW capacity (pit) Type DCR �( 0.00 0.00 490.00 yy 2 O.00 O.00 490.00 Og0 Og0 490.00 OO MO 490.00 0.00 0.00 490.00 Length: 0.00 It No. of Walls this Length: 0 Load per wall (k) Load per well (pit) -RFD SW capacity (pit) Type DCR �( 0.00 0.00 490.00 ; Z OM OM 490.00 i o 0.00 0.00 490.00 Og0 Og0 490.00 0.00 0.00 490.00 Length: 0.00 It No. of Walls this Length: 0 0 Load per wall (k) Load per well (pit) -RFD SW capacity (pit) I Type DCR �( 0.00 Og0 490.00 2 O.00 O.00 490.00 Og0 Og0 49000 MO O50 490.00 0,00 Og0 490.00 M-22 Project: Madrona K-8, Areas 3-7 and Area MM Date: 3/27/2017 (Areas A and B) Engr: LAN Shear Wall Number V9w L9w ycw 10d DCR ki s (ft) (plf) Shear wall Area 6 North -South B6-NS/1 10.9 40,00 272 W6 0.56 B6-NS/2 5.0 25,25 199 W6 0.41 B6-NS/3 11.0 40.25 273 W6 0.56 B6-NS/4 4.6 24.08 191 W6 0.39 B6-NS/5 6.0 2&00 215 W6 0.44 B6-NS/6 13.1 12.2_ _'' 1014 2 4 0.69 B6-NS/7 13.1 12.92 1014 2 4 0.69 B6-NS/8 5.7 19.75 288 W6 0.59 East-West B6-EW/1 21.4 44.58 479 W4 0.65 B6-EW/2 4.0 17A7 235 W6 0.48 B6-EW/3 25.1 40.58 617 W4 0.84 B6-EW/4 16.8 30.58 548 W4 0.75 B6-EW/5 19.6 32.58 601 W4 0.82 Shear Wall Number V9W -L-9w -VW 10d DCR ki s (ft) (plf) Shear wall Area 7 North -South B7-NS/1 15.2 22.67 671 W3 0.70 B7-NS/2 8.0 M58 262 W6 0.54 B7-NS/3 8.0 30.58 262 W6 0.54 B7-NS/4 6.4 2615 238 W6 0.49 B7-NS/6 5.6 &42 666 W3 0.69 East-West B7-EW/1 16.0 32.58 491 W4 0.67 B7-EW/2 11.1 14.83 745 W3 0.78 B7-EW/3 11.1 14.83 745 W3 0.78 B7-EW/4* 14.9 12.58 1182 2 3 0.62 *upsized for drift M-23 Madrona K-8 67-NS/5 Designed By: Date: 3/27/2017 C0IJGHLIN PaK'T"ERLtJNDEEN I l . r .1 I'll l l V i `. - I `-111 Project No.: Client: Checked By: Sheet: 1 of 1 Shear Wall Holdown Design - Based on Loads Imposed sps 0.84 h 1.00 Roof Trib to Wall 20.25 ft Roof DL 16 _'.: psf Roof LL 29 'I. psf Wall Weight 12 psf Weight Wall Length 15 it f1 0.5 Max Trio to consider: 20 ft Trib to Holdown Used: 5 ft LRFD Tension and Load At Top ofWall Total ASD Tension Total ASD Compression Load Holdown Tension Holdown Max Level Floor Height (ft) SW Type (LRFD, kips) Compression Force - EQ Load (kips) (kips) Holdown Type Capacity (kips) Deflection** ONLY (kips) Roof 12.00 2W4 9.90 14.32 -8.9 12.6 HDU14-SDS2.5 (7.25) 14.39 0.109 Verify HD works = YES is Note: Holdown values are based on theallowable shear wall capacity rather than the actual demand from the analysis. This is a conservative approach intended to simplify the design and also to ensure that the holdowns are proportioned correctly to develop shear yielding in the wall. These values can be reduced if a conventional analysis is used. The anchorage force is determined based on thcexpected capacity of the wall, which is set equal to 1.5 times the nominal wall capacity. ** This deflection is not the max deflection directly from Simpson. The maximum deflection from Simpson is ratioed based on how much of the HD capacity is used. M-24 Project: Madrona K-8, B7-NS/5 Designed By: LAN Date: 3/27/2017 COUGHLINPORTEPLUNDEEN Project No.: Client: Checked By: Sheet: 1 of 1 Shear Wall Deflections ALL l PUTS LRFD ...................................................... PLY or OSB? PLY Fc perp 625 Wood E 1600 Wall Length 10.00 ft ASD (in) LRFD (in) HD Deflection Lin 0 0.109 0.15 HD Wood Area Recommended Level Wall Length (ft) Floor Height (ft) LRFD Wall Load (plf) Wall Type Ga (k/in) (in2) HD Wood Area Wall Load, LRFD (k) (in2) Roof 10.00 12,00 990 2W4 34 16 16 9.90 SDPWS Deflections Cumulative Bending Cumulative Shear Cumulative Holdown Total Cumulative Cumulative Deflection with Allowable Drift Ratio Level Deflection (in) Deflection (in) Deflection (in) Deflection (in) Cd/1e (in) Story Drift (in) Drift Ratio (in) Drift Ratio Acceptable? Roof 0.053 0.349 0.184 0.587 1.877 1.877 0.013 0.015 YES M-25 ljf .' fFf Frf fr.. f f, MISCELLANEAOUS F 'f WIND LOAD ON TRUSSES s M-26 Madrona K-8 LAN 4/11/17 Wind Pressure C&C - Zone 5 (corner, wall) p table = 28.7 kip, ASD EAF = 0.698 Detail 24/S-502 H = 11.25 ft trib H = 5.625 ft trib W = 8 ft A = 45 sf RF = 0.89 WL= 17.8 psf 100.3 plf 0.6WL= 100.3 plf << design for zone 5 since some of area in zone 5 (conservative) Rxn = 1.25 kip «this is the load the trusses must be design for M-27 MISCELLANEAOUS CLERESTORY BRACING DESIGN ,1,01.SE ..)° E) ,t,l_?:UE, SUITE 900 aEA'i''E'LE WA 98,100 ll P 206,,. Y3s 046 cpflinc,corn Madrona K-8 LAN 3/27/17 Clerestory Bracing Design (in Lateral Area 4 NS) Seismic Load Distributed force = 4.8 psf (refer to Lateral Area 4 INS design in original Permit Calculations) Area Width = 100.6 ft Force = 484 plf Area Length = 83.3 ft Load = 20 kip Overstrength = 2.5 << since is a collector Overstrength*Load = 50.4 kip, LRFD .• Angle rod at = 36 deg Horiz load to rod = 25 kip, LRFD Tension in rod = 31 kip, LRFD Yielding isn't a concern for the brace, rupture is a concern (LRFD) Fu = 58 ksi phi*Pn = Tension in rod Ae required = 0.71 in Use = A36 ksi 1 1/8" dia. rod Ae = 0.76 in OK Clevis Tension = 31 kip See AISC table 15-4 Use = 3" with 1" dia. pin Capacity = 37.5 kip, LRFD OK Beam See WF strut design W14x30 strut beam Bolted Connection See High Load Bolted Connection Connection per 30/S5.01 Vertical EQ load = 18 kip, LRFD Horiz EQ load = 25 kip, LRFD Weld from Beam to Plate Weld will take tension, moment from tension, and shear Weld on each side of plate Tension = 18 kip, LRFD M-29 Madrona K-8 LAN 3/27/17 Eccentricity = 3 in Moment = 54 kip -in Thickness = 1 in (assume unit thickness) Length = 15 in A = 30 in' I = 562.5 in c = 7.5 in Shear stress - T = 0.60 kip/in Shear stress - M = 0.72 kip/in Shear stress - T and M = 1.32 kip/in Shear = 25 kip, LRFD Shear stress - V = 0.84 kip/in Resultant stress = 1.57 kip/in Weld strength = 0.75*0.707*a*0.6*70 22.3a Fillet weld size req'd = 0.07 Use = 0.25 in OK Plate The plate will be governed by block shear or bolt bearing. The plate itself has enough capacity by inspection. Load = 31 kip, LRFD Thickness = 0.5 in Fu = 58 ksi Bolt Bearing Pin diameter = _ 1 in Hole diameter = 1.06 in Le = 2 in Lc = 1.47 in Rn = 51 kips 2.4dtFu = 70 kips Rn = 51 kips phi*Rn = 38 kips Block Shear L in V direction = 2 in L in T direction = 3.0 in Ubs = 1 M-30 Madrona K-8 LAN 3/27/17 Agv = 1.0 in Anv = 0.7 in Ant = 1.2 in 0.6FuAnv + UbsFuAnt = 98 kip 0.6FyAgv + UbsFuAnt = 94 kip Rn = 98 kip phi*Rn = 73 kip, LRFD Capacity phi*Rn = 38 kip O Kerf Plate The plate will be governed by block shear or bolt bearing. The plate itself has enough capacity by inspection. Load = 31 kip, LRFD Thickness = 0.5 in Fu = 58 ksi Bolt Bearing Pin diameter = 1 in Hole diameter = 1.06 in Le = 2 _ in Lc = 1.47 in Rn = 51 kips 2.4dtFu = 70 kips Rn = 51 kips phi*Rn = 38 kips Block Shear L in V direction = 2 in L in T direction = 5.2 in plate t = 0.375 in Diameter of hole = 3.0 in Ubs = 1 Agv = 0.8 in Anv = 0.2 in Ant = 1.4 in 0.6FuAnv + UbsFuAnt = 86 kip 0.6FyAgv + UbsFuAnt = 96 kip M-31 Madrona K-8 LAN 3/27/17 phi*Rn = 65 kip, LRFD Capacity phi*Rn = 38 kip OK Weld from Kerf to Column Weld will take tension and shear Weld on each side of plate Tension = 18 kip, LRFD Thickness = 1 in (assume unit thickness) Length = 14 in A = 28 in Shear stress - T = 0.64 kip/in Shear = 2 kip, LRFD Shear stress - V = 0.07 kip/in Resultant stress = 0.65 kip/in Weld strength = 0.75*0.707*a*0.6*70 22.3a Fillet weld size req'd = 0.03 Use = 0.25 in OK Beveled Plate Horizontal load = 17 kip, ASD DG #1, 6x8 Weak Axis Capacity = 18 kip, ASD ©K M-32 Strut Design COUGHLINPORTERLUNDEEN Project: Madrona K-8 Engineer: LAN Strut ID or Location: Strut at Gvm (W14x30) Date: 3/27/2017 Beam Size: w14X30 71 Beam Properties Fy 50 ksi A9 8.85 in Ix 291 in ly 19.6 in rx 5.73 in ry 1.49 in Sx 42 in Zx 47.3 in' 1 0.38 in Cw 887 in fl 0.5 SDS 0.84` '.. Wu = 1577 Of Factored Deflection = 0.19 in W = 507 k-in P = 50 kips Flexural Buckling Interaction = 1 0.354 OK Torsional Buckling Interaction= 0.451 OK Spans Lx <14.5 ft Lunbraced 8.0 > ft Lt—i- 14.5 Ift Uniform Service Gravity Loads Dead 918 plf Live 0 plf Snow 1606 = plf Axial Seismic Load Factored Load 1 50 kips Factored Seismic Load is MAX of: ASCE 7-10 Section 12.10.2.1 - Fpx(min) * (1.25 if ASCE 12.3.3.4 applies) + (Force Transferred) * 7 - (Fpx(calculated) or Qe) * 7 -,+ (Force Transferred) *7 , Values need not exceed Fpx Max + (Force Transferred) * 7 Moment Capacity Mn = 2110 k-in Wd = 1899 k-in Compressive Flexural Buckling Capacity KL/r (max) = 64.4 Qa = 0.976 Qs = 1.000 Q = 0.976 Fcr = 36.3 uPn = 289 kips Compressive Torsional Buckling Capacity Fe = 40.7 ksi Fcr = 29.5 ksi ri'n = 235 kips M-33 Strut Connection Design COUGHLINPORTERLUNDEEN Project: Madrona K-8 Engineer: LAN Strut ID or Location: Strut at Gym (W14x30) Date: 3/27/2017 INPUT (input cells are yellow) Connection Inputs Beam Inputs Number of Rows of Bolts 4 Beam Size w14x30 +' Total Number of Bolts 8 tw = 0.27 in Bolt Diameter 3/4 in Beam Web Yield Strength 50 ksi Bolt Type A325-N Beam Web Tensile Strength 65 ksi Vertical Edge Distance, Lev 125 in Horizontal Edge Distance, Leh 150 in Vertical Reaction Plate Thickness 0.500 in Dead Load 6.87 k Plate Yield Strength 50 ksi Live Load 0.00 k Plate Tensile Strength 65 ksi Snow Load 11.64 k End Offset from Support 150 in Seismic Load (w/out 7 7.20 k Vertical Bolt Spacing, Sv 3.00 in Horizontal Bolt Spacing, Sh 3.00 in Horizontal Reaction Plate Depth 11.50 in Seismic Load (w/out 7 -'25.00, : k Bolt Group Factors RISC Table 7-8 Load Criteria ex (bolt ecc.) 4.50 SDs = 0.84 Angle from vertical (degrees) 64.6 7 = 2.5 Bolt Group, C (Vert. and Horiz. Loads) 5.83 f, = 0.5 Bolt Group, C Vert. Loads Only) 4.52 OUTPUT Vertical Reaction 7 QE 18.00 k 0.2SDSD 1.15 k Em = 7 QE + 0.2SDsD _ 19.15 k Vertical Load Combinations 1.2D+1.6L+0.5S 14.06 k (IBC Eq 16-2) 1.2D+1.6S+f,L 26.87 k (IBC Eq 16-2) 1.2D+f,L+Em 27.40 k (IBC Eq 16-22) (1.2+0.2SDs)D+7 QE+f,L+0.2S 29.73 k (ASCE 7-05 12.4.3.2) V. = 29.73 k UVn 80.91 k OK Horizontal Reaction Hu = 7 QE = 62.50 k �H = 134.26 k OK Combined Horizontal & Vertical Loads Ductility Check Per AISC Page 10-103 R. = 69.21 k Maximum Plate Thickness = 0.63 in Bolt Fracture 104.3 k OK Combined Shear/Tension Yielding 0.095 DCR Combined Block Shear 0.415 DCR Fillet Weld Size Required Each Side of Plate Combined Bolt Bearing 0.170 DCR 5 16ths Combined Bending/Axial 0.401 DCR OK M-34 ... ERLUNDEEN `„Tr"e,UC T URAL.. Cl o SC-, ;�, 11.;; :i ,I ,: t: t. t�.%7 s:=.. MISCELLANEAOUS i 8,01 SECOND At,_N(JE, S €TE 900 SEAT T LE, VVA 98104 i P 206,343,0460 c llr)c,c,c)rnMl/l/ M-35 F, Madrona K-8 LAN 4/3/17 Lateral Load Transfer at SW's/Strut Trusses: Interior Wall Details = 26/S-604 and 30/5-604 Design for largest strut truss load Load = 13.5 kip, LRFD 9.48 kip, ASD Tension Case (30)114 "xS" SDS screws Capacity of 1 = 0.35 kip Total capacity = 10.5 kip OK 2x12 (DF#2) Tension parallel to grain CD = CM = Ct = CF = C; _ Ft* _ Ft = A= Tension Capacity = CMST12 Strap Capacity = Length required = Length use = Rim Board (6x12 LSt) Tension parallel to grain CD = Ft* _ Ft = A= Tension Capacity = SDS screws into SW OK by inspection 1.6 1 1 1 1 575 920 16.88 15530 15.5 for seismic load OK 9.22 kip OK( 7.3 ft, 2*end length 7.5 ft 1.6 for seismic load 1075 psi 1720 psi 63.25 in 108790 lb 108.8 kip OK M-36 Madrona K-8 LAN 4/3/17 Compression Case Bearing from Strut Truss Compression perpendicular to grain CM = 1 Ct = 1 Lb = 3 ft Cb = 1.13 Fc,perp.* = 405 psi (assume hem fir) Fc,perp. = 458 psi A = 22.13 in (2x12 and assume 2x4 strut truss chord) Comp.Capacity = 10126 lb 10.1 kip OK Rim Board (6x12 LSL) OK for compression by inspection M-37 Madrona K-8 LAN 4/3/17 Lateral Load Transfer at SW's/Strut Trusses: Exterior Wall Details = 4/5-605 and 6/S-605 Design for largest strut truss load Load = 7.4 kip, LRFD 5.18 kip, ASD Tension Case CMST12 Strap Capacity = Length required = Length use = Rim Board (4x6 LSL) Tension parallel to grain CD = Ft* _ Ft = A= Tension Capacity = SDS screws into SW OK by inspection 9.22 kip OK 7.3 ft, 2*end length 7.5 ft 1.6 for seismic load 1075 psi 1720 psi 19.25 in 33110 lb 33.1 kip OK Compression Case Bearing from Strut Truss Compression parallel to grain CD = 1.6 for seismic load CM = 1 Ct = 1 CF = 1 C; = 1 Cp = 1 F,,paraiiei* = 1835 psi (LSL rim board) Fc,parallel = 2936 psi A = 5.25 in (assume 2x4 strut truss chord) Comp.Capacity = 15414 lb 15.4 kip OK Rim Board (4x6 LSL) OK for compression by inspection M-38 ... ERLUNDEEN `„Tr"e,UC T URAL.. Cl o SC. ;�, 11.;; :i ,I ,: t: t. t�.%7 s:= MISCELLANEAOUS METAL ROOF DECK M-39 NOTES: The nominal shear values, Sn, have been divided by a Safety Factor of 3,00 to obtain (ASD) Diaphragm Shear values, S, for seismic loading (worst ca The following Safety Factors shown are from Table D5 of 2004 Supplement AISI Specification: Seismic: _ .55 for LRFD and Q = 3.00 for ASD for welds. Wind:=.70 for LRFD and R= 2.35 for ASD for welds. Other: _ .60 for LRFD and Q = 2.65 for ASD for welds. Calculations are based on a "Single Span Condition". For "Other Span Conditions" contact the Metal Dek Group for additional informati, Fy = 40 ksi and F. = 55 ke Indicates Shear Buckling controls. A Safety Factor of 2.00 was used as referenced in SDI DDfA0 M-40 ,Metal ■ a unit of 00' SECTION PROPERTIES fy=40 ksi PITCH 1�41( I Y 11 S HEIGHT 211 COVEHwiDTif 24.-1l2" .. ASD DESIGN MAXIMUM SUPERIMPOSED UNIFORM ASD LOADS (psf) SINGLE SPAN DOUBLE SPAN TRIPLE SPAN Span I Load Combinations I GAGE 22 20 18 16 22 20 18 16 22 20 18 16 D+L (Strength) 61 76 102 129 56* 70` 94* 119* 67* 83* 113* 142* 8'• 6.. D+L (Deflection) 39 47 63 80 56 70 94 119 67 83 113 142 L (Deflection) 27 33 44 56 56 70 94 119 51 63 83 105 D+L (Strength) 54 68 90 115 51* 64* 86* 108* 61* 76* 103* 130* 1'-0" D+L (Deflection) 32 39 52 66 51 64 86 108 61 76 102 129 L (Deflection) 23 28 37 47 51 64 86 108 43 53 70 89 D+L (Strength) 48 60 81 103 47* 59* 79* 99* 56* 70* 95* 119* 11.6.. D+L (Deflection) 27 33 44 56 47 59 79 99 53 65 86 109 L (Deflection) 20 24 32 40 47 57 76 96 37 45 60 75 D+! (Strength) 43 54 73 92 44* 54* 73* 91* 52* 65* 87* 110* 10' - 0" D+L (Deflection) 23 28 37 47 44 54 73 91 45 55 73 93 L (Deflection) 17 20 27 34 40 49 65 83 32 38 51 65 D+L (Strength) 39 49 65 83 40* 49* 66* 83* 48* 60* 81* 101* 10'- 6" D+L (Deflection) 20 24 32 40 40 49 66 83 39 47 63 80 L (Deflection) 14 18 23 30 35 42 56 71 27 33 44 56 D+L (Strength) 35 44 59 76 36* 44* 60* 76* 45* 56* 75* 94* 111- 0" D+L (Deflection) 17 20 27 35 36 44 60 76 34 41 54 69 L (Deflection) 13 15 20 26 30 37 49 62 24 29 38 1 49 D+L (Strength) 32 40 54 69 33* 40* 55* 69* 41* 51* 69* 87* 11'- 6" D+L (Deflection) 14 18 23 30 33 40 55 69 29 35 47 60 L (Deflection) 11 13 18 23 27 32 43 54 21 25 34 43 D+L (Strength) 29 37 49 63 30* 37* 50* 63* 38* 47* 63* 80* 12'- 0" D+L (Deflection) 12 15 20 26 30 37 50 63 25 31 41 52 L (Deflection) 10 12 16 20 23 28 38 48 18 22 30 37 D+L (Strength) 27 34 45 58 27* 34* 46* 58` 35* 43* 58* 73* 12'- 6" D+L (Deflection) 11 13 18 22 27 34 46 58 22 27 36 45 L (Deflection) 9 10 14 18 21 25 33 42 16 20 26 33 D+L (Strength) 25 31 42 53 25* 31* 42* 53* 32* 39* 53* 67* 13'- 0" D+L (Deflection) 9 11 15 19 25 31 41 52 20 24 32 40 L (Deflection) 8 9 12 16 18 22 30 38 14 17 23 29 D+L (Strength) 23 29 38 49 23* 29* 39* 49` 29* 36* 49* 62* 13'- 6" D+L (Deflection) 8 10 13 17 23 27 36 46 17 21 28 35 L (Deflection) 7 8 11 14 16 20 27 34 13 16 21 26 D+L (Strength) 21 26 35 45 21* 26* 36* 45* 27* 34* 45* 57* 14'- 0" D+L (Deflection) 7 9 12 15 20 24 32 41 15 19 25 31 L (Deflection) 6 7 10 13 15 18 24 30 12 14 19 24 D+L (Strength) 19 24 33 42 20* 24* 33* 42* 25* 31* 42* 53* 14'. 6" D+L (Deflection) 6 8 10 13 18 22 29 36 13 16 22 28 L (Deflection) 6 7 9 11 13 16 21 27 10 13 17 21 D+L (Strength) 18 23 30 39 18* 23* 31* 39* 23* 29* 39* 49* 16' - 0" D+L (Deflection) 5 7 9 11 16 19 26 33 12 15 19 25 L (Deflection) 5 1 6 8 1 10 12 15 19 1 24 9 11 115 19 D+L (Strength) 61 Max. superimposed ASD dead + live load (psf) (governed by strength limitation) _+L (Deflection) 3n Max. superimposed ASP dead + live load (psf) (governed by deflection limitation of L(240 or 1") nL (Deflection) I 27 Max. superimposed ASD live load (psf) (governed by deflection limitation of !1360 or 1'°) lFer£ical load span (center to center spacing) Wd Weight of deck (uncoated), psf Rbe Allowable exterior web crippling value per foot of deck width, pit to Moment of inertia for deflection per foot of deck width (in °)lft Rbi Allowable interior web crippling value per foot of deck width, pif Sp Section modulus for positive bending per foot of deck width, (in 3)/ft D Uniform dead load, psf So Section modulus for negative bending per foot of deck width, (in 3)(ft L Uniform live load, psf Va Allowable shear value per foot of deck width, pit Notes: I. Bending strength based on allowable flexural stress of 24 ksi. 2. Loads marked with asterisk (*) are governed by moment & shear, interior reactions (web crippling) or applied moment & reactions assuming 4" of interior bearing. 3. An upper limit of 400 psf has been applied to the loads. 4. Deck length over 45'-0" require inquiry and special accommodations. Please contact the Metal-Dek Group x for further information. The section properties table is based on 2001 AISI's North American Specification for the Design of Cold -Formed Steel Structural Members (2004 Supplement). REV: 718/08 M-41 AREA 4 - NS FOR DIAPHRAGM DESIGN In this direction, there is a flexible diaphragm �= 1 �= 1 Ax = 1 < There is no torsional irregularity. Base shear = 37.7 kip Diaphragm force = 47.3 kip Overall area = 9826 sf Distributed force = 3.8 psf, for a shear wall 4.8 psf, for diaphragm Wood Diaphragm Span Trib Width (ft) Length (ft) Force (plf) Force (kip) 1 (Left) 17.4 83.3 84 3.5 1 (Right) 17.4 83.3 84 3.5 Diaphragm N/S SW Force (kip) Length (ft) Vdia (plf) A4-NS/A West 0.0 0 0 East 3.5 96 37 A4-NS/B West 3.5 96 37 East 0.0 0 0 Steel Diaphragm Span 1 (Left) 1 (Right) Diaphragm A4-NS/A (S) A4-NS/B (S) Max Vdia = Use = Capacity Puddle weld capacity = Spacing = Weld capacity = Trib Width (ft) Length (ft) 95.7 83.3 95.7 83.3 N/S SW Force (kip) West 0.0 East 19.2 West 19.2 East 0.0 315 plf Versa-Dek LS Acoustical 525 plf 1095 Ibs 18 in 730 Force (plf) 461 461 Length (ft) 0 61 61 0 OK Force (kip) 19.2 19.2 Vdia (plf) 0 315 315 0 Il'tQiiL FOR DIAPHRAGM DESIGN In this direction, there is a flexible diaphragm. �= 1 �= 1 Ax = 1 < There is no torsional irregularity. Base shear = 37.7 kip Diaphragm force = 47.3 kip Overall area = 9826 sf Distributed force = 3.8 psf, for a shear wall 4.8 psf, for diaphragm Wood Diaphragm Span CR (Left) CR (Right) Diaphragm A4-EW/A A4-EW/B Steel Diaphragm Span CL 1 (Left) 1 (Right) Diaphragm A4-EW/A (S) A4-EW/B (S) Max Vdia = Use = Capacity Puddle weld capacity = Spacing = Weld capacity = Trib Width (ft) Length (ft) Force (plf) Force (kip) 83.3 17.3 401 3.5 83.3 17.3 401 3.5 N/S SW Force (kip) Length (ft) Vdia (plf) West 0.0 0 0 East 3.5 96 37 West 3.5 96 37 East 0.0 0 0 Trib Width (ft) Length (ft) 83.3 4.8 83.3 95.7 83.3 95.7 N/S SW Force (kip) West 1.9 East 19.2 West 19.2 East 0.0 290 plf Versa-Dek LS Acoustical 525 plf 1095 Ibs 18 in 730 Force (plf) 401 401 401 Length (ft) 66 66 80 80 Force (kip) 1.9 19.2 19.2 Vdia (plf) 29 290 242 0 M-43 ... ERLUNDEEN `„Tr"e,UC T URAL.. Cl o SC. ;�, 11.;; :i ,I ,: t: t. t�.%7 s:= MISCELLANEAOUS SEISMIC JOINTS 801 SECOND AVENUE, .ad. H'E 900 Sf.AP'{`L,m WA 98104 i P 206 t r ,. 04,,30 f M-44 COUGHLINPORTERLUNDEEN '),WkLL �Ar4ol-( s STRUCTURAL CIVIL SEISMIC ENGINEERING SAY k,-. 0 2 9 -G-7 17 ;K t— S )Ohm F Ro"A --- 0, —7 A4&*KS 0,0'tksV ro.oll 14•c. 4- 1. rnrl vrvv f '7 flo. -1 2 12 10. -o: z z 0 z O O SON/k Designed By 14-(- L Date: 6 ft 11-t l _7 Project No. Client: Checked By: Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 l P 2M34M460 3 cplinc.comM-45 Project MkWa4k fft-� Designed By V—(,L Date: 0'11 11 No. Client: Checked By: Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 1 P 206.343.0460 / cplinc.comM-46 ... ERLUNDEEN `„Tr"e,1..sC T URAL.. Cl o SC. ;�, 11.;; :i ,I ,: t: t. t�.%7 s:= WALKWA Y CANOPY DESIGN 8,01 SECOND AVENUE, SUHTE 900 SEATTLE, VIVA 9810,1 / F, c;r i343,04!6O ; ;..dt,.c,com ... ERLUNDEEN `„Tr"e,UC T URAL.. Cl o SC. ;�, 11.;; ENGINEFRING WALKWA Y CANOPY DESIGN LARGE CANOPY - CRITERIA 801 SECOND r.Vt.N(JE, ,. U T'E 900 _SEA {�LE WA 98104 r P 200 Yw0460 0 _c p [inc: n am LARGE CANOPY SEISMIC CRITERIA COUGH LINPORTERLUN 2012 IBC AND ASCE 7-10 - EARTHQUAKE DESIGN DATA (New Buildings) ASCE 7 SECTION 11.4 - SEISMIC GROUND MOTION VALUES (LATTITUDE: 47.783991 LONGITUDE: 122.35728 ) Ss = 1.262 USGS link. See CPL Seismic Guide for more info. Si = 0A93 Vs = Geotech. Rpt. (Shear Wave Velocity) N = Geotech. Rpt. (Standard Penetration Resistance) Su = Geotech. Rpt. (Un-drained Shear Strength) Site Class = C Geotech. Rpt. (or Chapter 20) Fa = 1.0 Table 11.4-1 pg. 66 Y� EFv 1.4 + (1.3-1.A/ 0.5-0A)*(0.493-0.4) = 1.307 Fv _ 1,307 <--------- - Table 11.4-2 pg. 66 SMs = 1.262 Eq.11.4-1 pg. 65 SMi = 0.645 Eq.11.4-2 pg. 65 SDs = 0.841 Eq.11.4-3 pg. 65 SDS = 0,430 Eq.11.4-4 pg. 65 ASCE 7 SECTION 11.5 - IMPORTANCE FACTOR & RISK CATEGORY Nature of Occupancy C IBC Table 1604.5 Risk Category III IBC Table 1604.5 Importance Factor, le = 1.25 ASCE 7 Table 1.5-2 pg. 5 ASCE 7 SECTION 1.1.6 - SEISMIC DESIGN CATEGORY SDC = D Table 11.6-1 pg. 67 (Choose most severe. See Section 11.6 for exceptions) SDC = D Table 11.6-2 pg. 67 ASCE 7 SECTION 1.2.2 - STRUCTURAL SYSTEM SELECTION Basic Seismic Force Resisting System(s) - Table 12.2-1 pg. 73-77 Steel ordinary moment frame R = 15 (R, Q , Ca & can very for each orthogonal direction per 12.2.2) Qo = 3.0 (use reduction of 0.5 from value per Table 12.2-1 footnote g where applicable) Ca = 3.0 Height Limitation = NL Project: Madrona K-8 Designed By: LAN Date: 2/23/2017 Project No: Client: Checked By: Sheet 1 of 3 801 SECOND AVENUE - SUITE 900 • SEATTLE, WA • 98104• P: 206/343-0460 • F: 206/343-5691 WC-2 LARGE CANOPY COUGH LIN PORTERLUNDEEN WIND CRITERIA A CONSULTING STRUCTURALAND CML ENGINEERING CORPORATION INTERNATIONAL BUILDING CODE 2012 See Wind Design Guide for Add'I Information ASCE 7-10 Chapter 28 Envelope Procedure (Low Rise Method) MWFRS ONLY: BASIC WIND SPEED & RISK CATEGORY Risk Category IBC 2012 1604Z V.1t = ASCE 7-10 Fig. 26.5-1A thru 26.5-1C pg, 247 - 249 or consult local building official Building official Phone # Date DIRECTIONALITY FACTOR Kd See following calculations 0.85 for buildings) VELOCITY PRESSURE EXPOSURE COEFFICIENT Exposure Category = IBC 2012 1609.4 or consult local building official Mean Roof Height = ?'f 6 ")/? - 'zo 1tI 6 K, = (based on a specific height of the bldg.) Table 28.3-1 pg. 299 Kr; = (based on mean roof height) Table 28.3-1 pg. 299 TOPOGRAPHIC FACTOR Note to Enja!Ler: See Coughlbi Pot -ter Lutideetts Wtud Desigiz Guide for -available Kzt tnaps, or gather data listed befoul to calculate Kzt iudepeudeutly if required (see Section 26.8.2). H = lo3> Fig. 26.84 p&252 F4 X = — Fig, 26.8-1 pg.252 Z = 23 Fig. 26.8-1 pg.252 L(&� Lh = Fig. 26.84 p&252 2-D Ridge 2-D Escarpment 3-D Axisymmetrical Hill Fig. 26.8-1 yFig. Ki = 26.8-1 pg. 252 - 253 K2 = Fig. 26.8-1 pg. 252-253 K3 = Fig. 26.8-1 pg. 252 - 253 K7t = (I + KiK2K3)2 Eq. 26.8-1 p& 254 ENCLOSURE %CLASSIFICATION Enclosed Yartially Enclosed INTERNAL PRESSURE COEFFICIENT GCPi = -± 6, to Table 26.11-1 pg. 258 (see Definitions See. 26.2 pg. 241) (GCpi 0.18 for Enclosed Buildingsy am erojert Nln- Client- CbeCL-Pri Ry- S h �t of 801 Second Ave , Suite 900 - Seattle, WA - 98104 - Phone (206) 343-0460 WC-3 COUGHLIN PORTER LUNDEEN STRUCTURAL • CIVIL • SEISMIC ENGINEERING From ASCE 7-10 Ch. 26 Wind Loads: General Requirements BUILDING, OPEN: A building having each wall at least 80 percent open. This condition is expressed for each wall by the equation Ao >_ 0.8 A, where Ao = total area of openings in a wall that receives positive external pressure, in ft' (m) A'� = the gross area of that wall in which Ao is identified, in ft' (m) BUILDING, PARTIALLY ENCLOSED: A. building that complies with both of the following conditions: i. The total area of openings in a wall that receives positive external pressure exceeds the sum of the areas of openings in the balance of the building envelope (walls and roof) by more than 10 percent. 2. The total area of openings in a wall that receives positive external pressure exceeds 4 ft2 (0.37 m') or 1 percent of the area of that wall, whichever is smaller, and the percentage of openings in the balance of the building envelope does not exceed 20 percent. D.5 D.4 T F.8 South Elevation at Courtyard Area of openings on each side is equal, so canopies are not Partially Enclosed per ASCE 7-10 definition. Area of openings/Gross area = 0.48 < 0.80; canopy does not comply with the definition for an Open building. Design canopies for Enclosed building wind pressures per ASCE 7-10. Arlington ES Designed By: RJV Date: 5/ 10/ 16 Project No: S 15-0092-03 Client: Mahlum Checked 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343.0460 / cplinc.com Sheet: I of I WC-4 [NOwSlayo Ziienw" i li7i�t7= �7.' fL�7► i"7�7►i f►11Y.`1iiNLUIX WEDIDIii[ Components and Madding — Part 4 C C Enclosed Buildings �Wall and Roof Pressures 2 3. 3 O a a 5 Gable Roof ------------ c G slaps i d Monoslope Roof 0 322 A- 3. a' 4O 2 O L 1 3 a '_✓ Mansard Roof O WC-5 Components and Cladding'- Part 4 r !C EnclosedBuildin2s Wall and Roof Pressures r r r rr+ ' rc r 1. For each roof form, Exposure C, V and It determine roof and wall cladding pressures for the applicable zone from tables below. For other exposures B or D, multiply pressures from table by the appropriate exposure adjustment factor determined from figure below. 2. Interpolation between h values is permitted. For pressures at other V values than shown in the table, multiply table value for any given V' in the table as shown below: Pressure at desired V = pressure from table at V x [V desired / V']2 3. Where two load cases are shown, both positive and negative pressures shall be considered. 4. Pressures are shown for an effective wind area = 10 sf (0.93 m2). For larger effective wind areas, the pressure shown may be reduced by the reduction coefficient applicable to each zone. Notation: h = mean roof height (ft) V = Basic wind speed (mph) M WC-6 ON I IN Ilay ilia a DIM me@ 90-1 Table 30.7-2 C & C Components and Cladding - Part 4 V 110-120 mph Exposure C h 15-80 ft. V (MPH) 110 115 120 1 Load Zone Zone Zone I h (ft) Roof Form Case 1 2 3 4 1 5 1 2 1 3 4 5 1 1 2 3 1 4 1 5 Flat Roof 1 -50.2 _78.8 -107.5 -34.3 -63.0 -54.9 -86.2 -117.5 -37.5 -68.8 -59.8 -93.8 - 127.91 40.9 -74.9 2 NA NA NA 34,3 34,3 NA NA NA 37.5 37.5 NA NA NA 40.9 1 40.9 Gable Roof 1 -37.5 -63.0 -94.7 -40.7 -63.0 41.0 -68.8 -103.6 44.5 -68.8 -44.6 -74.9 -112.8 48.4 1 -74.9 80 Mansard Roof 2 21.6 21,6 21.6 37.5 34.3 23.6 23.6 23.6 41.0 37.5 25.7 257 25,7 i 44.6 40,9 Hip Roof 1 -34,3 -59.8 -88.4 -40.7 -63.0 -37,5 -65,3 -96,6 -44,5 -68,8 -40,9 -71.1 -105.2 -48A -74.9 2 21.6 21.6 216 37.5 34.3 23.6 23.6 23.6 41.0 37.5 25,7 25.7 25.7 i 44.6 40.9 Monoslope Roof 1 -43.9 -56.6 -97.9 -40.7 -63.0 -48.0 -61.9 -107.0 -44.5 -68.8 -52.2 -67.4 -116.5 -48.4 -74,9 2^ 18.4 18A 184 37,5 37.5 20.2 20.2 20.2 41.0 41.0 21.9 21.9 21,9 44.6 44,6 Flat Roof 1 -48.8 -76.7 -104,5 -33.4 -61.2 -53.4 -83.8 -114.2 -36.5 -66.9 -58.1 -91.2 -124.3 -39,7 -72,8 2 NA NA NA 33.4 33.4 NA NA NA 36.5 36.5 NA NA NA 39.7 39.7 Gable Roof 1 -36.5 -61.2 -92.1 -39.6 -61.2 -39.9 -66.9 -100.7 43.2 -66.9 43.4 -72.8 -109.6 47.1 -72.8 70 Mansard Roof 2 21,0 21.0 21.0 36.5 33.4 23.0 210 210 39,9 36.5 25.0 25.0 25.0 43.4 39.7 Hip Roof 1 -33.4 58.1 -85.9 -39.6 -61.2 -36.5 -63.5 -93.9 -43.2 -66.9 -39.7 -69.2 -102.3 -47.1 -72.8 2 < 21,0 21.0 1 21.0 36.5 33.4 23.0 23,0 i 23.0 39.9 36.5 25.0 25.0 25.0 43.4 39.7 Monoslope Roof 1 -42.7 -55.0 -95.2 -39.6 -61.2 -46.6 -60A -104.1 -43,2 -66,9 -50,8 -65,5 -113.3 -47.1 1 2 17.9 17.9 17.9 36.5 36.5 19.6 19,6 1 19.6 39.9 1 39.9 <1 21.3 21.3 21,3 43.4 43A Flat Roof 1 -47.3 -74.2 -101A -32.3 -59.3 -51.7 -81.1 -110.6 -35.3 -64.8 -56.3 -88.3 -120.4 -38.5 -70.5 2 NA f NA NA 32,3 32.3 NA NA NA 35.3 35.3 NA NA NA 38.5 38.5 Gable Roof 1 -35.3 -59.3 -89.2 -38.3 -59.3 -38.6 -64.8 -97.5 -41.9 -64.8 -42.0 -70.5 -106.1 45.6 -70.5 60 Roof 2 20.3 20.3 20.3 35,3 32.3 22.2 22.2 22,2 38.6 35.3 24.2 24.2 24.2 42.0 38.5 -Mansard Hip Roof 1 -32.3 -56.3 -83.2 -38.3 -59.3 -35.3 -61.5 -90.9 -41.9 -64.8 -38.5 -67.0 -99.0 -45.6 -70.5 2 i. 203 1 20.3 203 35.3 323 22,2 22,2 22.2 38.6 35.3 24,2 24,2 24.2 42.0 38.5 Monoslope Roof 1 -41,3 -53.3 -92.2 -38.3 -59.3 -45.1 -58.2 -100.7 -41.9 -64.8 49.1 -63.4 -109.7 -45.6 -70.5 1 2 17.4 17.4 17.4 35,3 35.3 19,0 19.0 1 19.0 3&6 38.6 1 20.7 20.7 20,7 42.0 42.0 Flat Roof 1 -45.5 -71.4 -97.3 -31.1 -57.0 -49.7 -78.1 -106A -34.0 -62.3 -54.2 -85.0 -115.8 -37,0 -67,9 2 t NA NA NA 31.1 31.1 NA NA NA 34.0 34.0 NA NA 37.0 37.0 Gable Roof 1 -34.0 -57.0 -85.8 -36.9 -57.0 -37.1 -62.3 -93.8 -40.3 -62.3 40.4 _NA -67.9 -102.1 -43.9 -6T9 50 Roof 2 19.6 19.6 19i6 34.0 31.1 21.4 21.4 21.4 37.1 34.0 233 23.3 23.3 40.4 37.0 -Mansard Hip Roof 1 -31.1 -54.1 -80.1 -36.9 -57.0 -34.0 -59.2 -87.5 40.3 -62.3 -37.0 -64.4 -95.3 -43.9 -67.9 2 19.6 1 19.6 19,6 34.0 = 31.1 21A 21.4 21.4 37.1 34,0 23.3 23.3 23.3 40A 37.0 Monoslope Roof 1 -39.7 -51.3 -88.7 -36.9 -57.0 -45.4 -56.0 -96.9 -403 -623 473 -61.0 -105.6 -43.9 -67.9 1 2 16.7 16,7 16.7 34,0 34.0 18.3 1&3 1 18,3 37.1 37.1'1 19.9 19.9 19.9 40.4 40.4 Flat Roof 1 -43.4 -68.1 -92.9 -29.7 -54.4 -47.5 -74,5 101.5 -32.4 -59,5 -51.7 -81A -110.5 -35.3 -64.7 2 NA NA NA 29,7 293 NA NA NA 32.4 324 324 32-4 NA NA NA NA 35.3 35.3 --Gable -Roof 1 -32.4 7-4.74 -81.9 -35.2 _7Z4_ _735.4 -59.5 - -89.5 -38.4 384 59 5 -59.5 t J22 - 386 -38.6 =64.7 -97.4 41.9 -64.7 40 Mansard Roof 2 18.7 18.7 18.7 32.4 29.7 20.4 20.4 354 20.4 35.4 32 32.4 22.2 2 22,2 22.2 38.6 35.3 Hip Roof 1 -29.7 -51.7 -76.4 -35.2 -54.4 -32.4 -56.5 -83.5 -38.4 -59.5 -35.3 -61.5 -90.9 -41.9 -64.7 2 18.7 1 183 18.7 32.4 29.7 20.4 20.4 20.4 35.4 32.4 22.2 22.2 22.2 38.6 35,3 Monoslope Roof 1 -37.9 -48.9 -84.6 -35.2 -54.4 -41.4 -53.5 -92.5 -38.4 -59.5 -45.1 -58.2 -100.7 -41.9 -64.7 1 2 15.9 15.9 15.9 32.4 32.4 17.4 17.4 17A 35A 35A 19.0 19,0 19,0 38.6 38.6 Flat Roof 1 -40.9 -64.1 -87.4 -279 -51.2 44.7 -70.1 -95.5 -30.5 -56.0 48.6 -763 -104.0 -33.2 -60.9 2 NA NA NA 27,9 27.9 t_ NA NA NA 30,5 30.5 NA NA NA 33,2 33.2 Gable -Roof 1 -30.5 75I-2 -77.1 -33.1 -51.2 .4 -56.0 -84.2 -36.2 -56.0 -363 -60,9 -91,7 -39A -60,9 30 Roof 2 1T6 17.6 17.6 30.5 2T9 [-3 19,2 19.2 19,2 33.4 30.5 20.9 20,9 1 20.9 36.3 33,2 -Mansard Hip Roof 1 -27.9 -48.6 -71.9 -33.1 -51.2 -30.5 -53.1 -78.6 -36.2 -56.0 -33.2 -57.9 -85.6 -39.4 -60.9 2 1T6 17,6 176 30.5 2T9 %2 19.2 19.2 33.4 30.5 20.9 20.9 20.9 36.3 33.2 Monoslope Roof 1 -35.7 -46.0 -79.7 -33.1 -51.2 -39.0 -50.3 -87.1 -36.2 -56.0 42.5 -54.8 -94.8 -39.4 -60.9 2 15,0 15.0 15,0 30.5 30,5 16A 16A 16A 33.4 33,4 17,9 17,9 17,9 t 36,3 36,3 Flat Roof 1 -37.5 -58.9 -80.3 -25.6 -47.0 4LO �b4,4 . 873 28.0 4 -44.7 -70.1 -95.5 -30.5 -56.0 2 NA NA NA 25.6 25.6 NA NA NIA, 28,o 28 Q NA NA NA 30.5 30.5 Gable Roof 1 -28.0-47.0 -70.8 -30.4-47.0 -30.6 -51.4 -77.3 -33.2 -51.4 -33.3 -56.0 -84.2 -36.2 -56.0 20 Roof 2 16.1 161 161 28.0 25.6 17.6 17.6 17.6 30.6 28.0 19,2 19,2 19.2 333 30.5 -Mansard Hip Roof 1 -25.6 -44.6 -66.0 -30.4 -47.0 -28.0 48.8 -72.2 -33.2 -51.4 -30.5 -53.1 -78.6 -36.2 -56.0 2 f 16.1 16.1 16.1 28.0 25.6 17,6 17.6 17.6 30.6 28.0 19.2 19,2 19.2 33.3 30.5 Monoslope Roof 1 -32.8 -42.3 -73.1 -30.4 -47.0 -35.8 -46.2 -79.9 -33.2 -51.4 -39.0 -50.3 -8T0 -36.2 -56.0 1 2 13.8 13.8 13.8 28.0 2&0 15.1 15.1 151 30.6 30.6 i 16A 16.4 16A 33.3 313 Flat Roof 1 -35.3 -55.4 -75.5 -24.1 -44.3 -38.6 -60.6 -82.6 -26.4 48.4 42.0 -66.0 -89.9 -28.7 -52.7 2 NA NA NA 24.1 1 24.1 NA NA NA 26.4 26.4 NA NA NA 28.7 28.7 Gable Roof 1 -26.4 -44.3 -66.6 -28.6 -44.3 -28.8 48.4 -72.8 -31.3 -48.4 -31.4 -52.7 -79.3 -34.0 -52.7 15 Mansard Roof 2i 15.2 15.2 15.2 26A 24.1 16,6 16.6 16.6 2&8 26.4 18.1 18.1 18.1 31.4 28.7 Hip Roof 1 -24.1 -42.0 -62.1 -28.6 -44.3-48.4-26.4 -45.9 -67.9 -31.3-48.4-28,7 -50.0 -73.9 -34.0 52.7 2t 15.2 15,2 152 26A 24.1 16. 16,6 28,8 26-4 18A 18A 18A 31A 28,7 Monoslope Roof 1 -30.8 59.8 -68.8 -28.6 -44.3 _79- 2ja 73.7 -43.5 -75.2 -31.3 -48.4 -36.7 47.3 -81.9 -34.0 -52.7 2 13.0 13.0 13.0 26.4 26.4 14.2 14,2 14.2 28.8 28.8f 15.4 15.4 15.4 31.4 31.4 325 WC-7 ZU1 .� . , „ inn "W i 0 "i etc OI ZAJC Lei i j -, ,t F 1 '_? `• J t -.: SL Emij —C : Mv� Designed By. Date: Project No. Client: Checked By: Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343,0460 / cplinc.cor WC-8 Seismic Base Shear - Flying Wedge (NS) Flying Wedge Weight Area = 797 sf DL = 18 psf Weight = 14.3 kip Flying Wedge Seismic Base Shear Site Class = C S,= 1.26 SI= O49 SDS= 0,84 SDI0,43 R 3.5 1 13 Fundamental Period T. = Ch„' h,= 24 C,= 0.028 x = 0.8 Ta = 0.356 Seismic Response Coefficient C, 0.300 C, = 0.300 C'(—)= 0.432 C, 0.046 Base Shear Weight = 14 kips I Seismic Base Shear = 4.3 kips (LFRD) I Controlling Base Shear - Flying Wedge (NS) Wind base shear governs Base Shear = 10.6 kips (LFRD)Base Shear, corner zone = 1.4 kips (LFRD) See following calculations Line Load = 88.3 plf (LFRD) Line Load, corner zone = 116.7 plf (LFRD) WC-10 COUGHLINPORTERLUNDEEN W, STRUCTURAL CIVIL SEISMIC ENGINEERING pj Or- -j>Ae-1r c19 lvtWFd-S -.�7 (f C A-jo-PLL-C—� A -TT AC P1 F:b C f C See previous calculations f A F 0, U el Z Vt f-A r eF' IC44ka- A 0 W 17:�T-v I f-, F e C ee DA ( rA Tic I S—wr= A A q, 0 z 0 U i Project: AA'Oeom A V— co> Date:Project No. Ghent: ,Checked By. Sheet. of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 i P 2M343.0460 1 cpHnG.CWC-1 1 Seismic Base Shear - Flying Wedge (EW) Flying Wedge Weight Area = 797 sf DL= 18! psf Weight = 14.3 kip Flying Wedge Seismic Base Shear Site Class = SS = S1= SDS= SDI= R= Fundamental Period Ta = Cihn" h,= 24 Ct= 0.028 x = 0.8 Ta = 0.356 Seismic Response Coefficient Cs iea)= 0.300 Cs= 0.300 Cs(max)=-,, 0.432 Cs(min)= 0.046 Base Shear Weight = 14 kips Seismic Base Shear = 4.3 kips (LFRD) Controlling Base Shear - Flying Wedge (NS) Seismic base sheaf governs Base Shear= 4.3 kips (LFRD) (8) Point Loads = 0.54 kips (LFRD) WC-12 Company CPL Designer KCL IIIRISA Job Number S130282-01 Model Name Flying Wedge Mar31, 2017 8:43 AM Checked By.__ Hot Rolled Steel Properties 1 ahal F fksil C, rkcil Nil Tharm MF r]ansitvrk/ft Yialrlrksil Rv Fnfkcil Rt Hot Rolled Steel Section Sets Label Shane Tvne Design List Material Design Ru._ A fin21 Ivvfin4l Izzfin4l J fin41 Joint Coordinates and Temperatures Label X fftl Y fftl Z rftl Temn rFl Detach From Di... t a a 1 i s' • 1 i Joint Boundary Conditions Inint I ahal X fk/inl Y rk/inl 7 rk/inl X Rnt rk-ft/rarll Y Rnt rk-ft/rnr11 7 Rnt rk-ftlrarll IIjI « 'w.1111P. isIM, I t ram. ♦ ®'"> i... r„r f '' RISA-31D Version 15.0.1 [P:\_2013\P13JEC-033\ENG\Steel\Flying Wedge\Flying Wedge.r3d] Page 1 WC-25 CPL Mar 31, 2017 KCL 8:43 AM S130282-01 Checked By__ Flying Wedge Company Designer IIIRISA Job Number Model Name Joint Loads and Enforced Displacements (BLC 4: EQ, )Q loint Label L,D,M Direction Maqnitudef(k,k-ft), (in,rad), (k* SA2/f Member Distributed Loads (BL C I: DQ Member Label Direction Start MMEWMHA a r- --mg ".1 wow, MgAli nommi WIT* I wow. r, we (a MENION -------- -- - - - -------------- - Member Distributed Loads (BL C 2: SL) Member Label Direction Start Maqnituderk/it,Fl End Maqnituderk/ft,F] Start LocationifftAl End Locabonrft,%] • MIM Member Distributed Loads (BLC 3: WL, Z) -ir Label Direction Start ffla,,. :11117,11111 F Me, 050 - in WeNT515TERWAN — — -------- RISA-3D Version 15.0.1 [P:\_2013\P13JEC-033\ENG\Steel\Flying WedgeTlying Wedge.r3d] Page 2 WC-26 Company CPL Designer KCL 111RISA) Job Number S130282-01 Model Name Flying Wedge Basic Load Cases R1 (' np-qrrintinn ('.Ptp-nnrx/ Y (,rpx/itx/ Y (,rpx/itx/ 7 (,rpx/itx/ Joint Mar 31, 2017 8:43 AM Checked By.__ Point ni-,trihiitpri Ari-n(NAP. 1.;iirfi;rp-(P Load Combinations ni-.-qr.rintinn Rl('.FRr. Rl('F;;r. RIC'.Fqr Rl('F:qr. RIC'FRr. Rl('.FRr. Rl('Fqr. RIC'.Fqr. Rl('Fpr. . .. .. .. .. .. .. .. .. .. .. .. .. .. .. Kill Joint Reactions II Joint Label X 11I Y R1 7 rkl MX Ik-ftl MY rk-ftl M7 11I gal MEW U11 -8.523 M27 v. RISA-3D Version 15.0.1 [P:\_2013\P13JEC-033\ENG\Steel\Flying WedgeTlying Wedge.r3d] Page 3 WC-27 CPL Mar 31, 2017 KCL 8:43 AM S130282-01 Checked By__ Flying Wedge Company Designer IIIRISA Job Number Model Name MemberAISC 14th(360-10): LRFD Steel Code Checks (Continued) LC Member Shape UC Max Loc[ftj Shear ... Loc[ftj Dir phi*Pnc[kl phi*Pntfkl phi*Mn... phi*Mn... Cb Eqn KOM -;a= mm go IIMEMEM�� IMMM Emig GRIMMEW Im mm Emil MM go ma � M. I�Iffm= I E M &TkI 0 K11 A 03 0 EWA 0 M -MIKE, 010 0 M N -RAKEK-W =4MMM mm EMEMEMMMM min OM RISA-3D Version 15.0.1 [P:\_2013\P13JEC-033\ENG\Steel\Flying WedgeTlying Wedge.r3d] Page 11 WC-35 ljf .' fFf Frf fr.. f f, DESIGN LARGE CANOPY - CONNECTION DESIGN..'!°% WC-36 r �j/ f \COUGHLINPORTERLUNDEEN STRUCTURAL CIVIL SEISMIC ENGINEERING 10. j ' �Wm As c— t F , 1 4 ,- ,.,.{� 1 a { 14- to" T c' Ow r . it- t 1 C FILLER 4 PER 11/5-502 G4L. CONN. PER 3015-501 SEAM — COL: I i I I Oil I jio Oa) ( I I \ \ y4 COL. PER I I \ I PLAN I i KERF %' x 1'-0"x T-O" H55 5x5X 1 EA. EN CAPE BEAM FLANGE \ TO FIT TIGHT f� \ ' AROUND COLUMN \ I l % 4 el. per plan r : _ I I BEAM BRACE COL. I to i U flange to BEAM PER PLAN x column /4 z i a 0 O. Z. S D O u N u 6 G O u Project: IAA -WON A� Designed By: Date: j ` f' /1-7 Project No. Client:. Checked By: Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 t P 208.343;0460 / cplinc.c-WC-37 ljf .' fFf Frf fr.. f f, WALKWA Y CANOPY DESIGN LARGE CANOPY -FOOTING DESIGN % F WC-38 f 1-lying weage rooting btaamty Analysis cWVJUML mrvtc I ttcwryucen Project: Madrona K-8 Engineer: LAN Footina ID or Location: Fivina Wedae Footina I Date: 4/13/17 GEOMETRY: Distance to Left Edge L, = 5 ft Distance to Right Edge L2 = 5 ft Column Spacing S = 10.5 ft Footing Width B =- - 5 ft Footing Thickness T = — 3 ft Depth of Soil Ds= 1 in Slab Thickness t = 0 in Slab Overhang x = 0 ft Distance from Left Column to Add'] Load tOTHERI = 0 ft Distance from Left Column to Add'] Load tOTHER1 = 0 ft LOADS: 1 1(f), 1(-) I 1 1(*), *) PCOLi (k) PCOL2 (k) V (k) POT'HERI (k) POTHER2 (k) Dead 10.0 10.0 0 0 Live 0 0 0 0 Seismic 0 0 - 14 Wind 15.8 -15.8 0 Roof/Snow 6.0 r 60 0 0 Redundancy Factor h = 1 - Analysis Procedure ELF MATERIAL PROPERTIES: Allowable Bearing Pressure, including FS qa = 3 ksf Soil Surcharge Weight W-il = 110 - pcf Passive Equivalent Fluid Weight, including FS wp = 300 pcf Soil Friction Coefficient, including FS p = 0.7 Concrete Weight y = 150 :: pcf Concrete strength fc = 4 ksf Steel Strength fy = 60 ksi'` f, (for gravity load combination) 0.5 Analysis results: DS T POOL; Pr,OL P BASIC LOAD COMBINATIONS DCR Max Bearing Min Bearing Bearing YES 0.381 1.13 ksf 0.00 ksf Sliding YES 1 0,281 1.13 ALTERNATE LOAD COMBINATIONS Bearing Y 0.33 1.33 ksf 0.00 ksf Sliding YES 0,201 1.33 —---------------------------------------------------------- T141S FOOTING IS --------.. ------------------------I . ` .. I .. Footing Reinforcing Design Long. Bottom Reinforcing Quantity Size Spacing 10 #4 @ 6.0 7 #5 @ 8.6 5 #6 @ 12.0 4 #7 @ 15.0 3 #8 @ 20.0 2 #9 @ 30.0 2 #10 @ 30.0 Long. Top Reinforcing Quantity Size Spacing 10 #4 @ 6.0 7 #5 @ 9.6 5 #6 @ 13.6 4 #7 @ 18.5 3 #8 @ 24.4 2 #9 @ 30.9 2 #10 @ 39.2 Shear Check: Cit4 Transverse Steel Reinf: As Req'd = 0.39 in /ft (top and bottom) V P:\_2013\P13JEC-033\ENG\Steel\Flying Wedge\Flying Wedge Frame Footing.xlsx 4/13/2017 WC-39 WALKWA Y CANOPY DESIGN ,1,01SE ..)° E),t,l_?:UE, SUITE 900 EATI'L,EWA 98104 :,tip. 4 0460 f_tplinc,corn f ljf .' fFf Frf fr.. f f, WC-40 � f SMALL CANOPIES SEISMIC CRITERIACOUGH LINPORTERLUN 2012 IBC AND ASCE 7-10 - EARTHQUAKE DESIGN DATA (New Buildings) ASCE 7 SECTION 11.4 - SEISMIC GROUND MOTION VALUES (LATTITUDE: 47.783991 LONGITUDE: 122.35728 ) Ss = 1.262 USGS link. See CPL Seismic Guide for more info. S, = 0A93 Vs = Geotech. Rpt. (Shear Wave Velocity) N = Geotech. Rpt. (Standard Penetration Resistance) Su - Geotech. Rpt. (Un-drained Shear Strength) Site Class = C Geotech. Rpt. (or Chapter 20) Fa = 1.0 Table 11.4-1 pg. 66 ^ Fv = 1 A + 0.3-1 A/ 0.5-0.4)*(0.493-0.4) = 1.307 F„ = 1,307 4-------"" Table 11.4-2 pg. 66 SMs = 1.262 Eq.11.4-1 pg. 65 SMi = 0.645 Eq.11.4-2 pg. 65 SDs = 0.841 Eq.11.4-3 pg. 65 Sul = 0,430 Eq.11.4-4 pg. 65 ASCE 7 SECTION 11.5 - IMPORTANCE FACTOR & RISK CATEGORY Nature of Occupancy C IBC Table 1604.5 Risk Category III IBC Table 1604.5 Importance Factor, Ie = 1.25 ASCE 7 Table 1.5-2 pg. 5 ASCE 7 SECTION 1.1.6 - SEISMIC DESIGN CATEGORY SDC = D Table 11.6-1 pg. 67 (Choose most severe. See Section 11.6 for exceptions) SDC = D Table 11.6-2 pg. 67 ASCE 7 SECTION 1.2.2 - STRUCTURAL SYSTEM SELECTION Basic Seismic Force Resisting System(s) - Table 12.2-1 pg. 73-77 Steel Soecial Cantilever Column R = 2 5 (R, Q , Ca & can very for each orthogonal direction per 12.2.2) Qo = 1.25 (use reduction of 0.5 from value per Table 12.2-1 footnote g where applicable) Ca = 2.5 Height Limitation = 35 Project: Madrona K-8 Designed By: LAN Date: 2/23/2017 Project No: Client: Checked By: Sheet 1 of 3 801 SECOND AVENUE - SUITE 900 • SEATTLE, WA • 98104• P: 206/343-0460 • F: 206/343-5691 WC-41 1►,11IN1uilia ■ DIM me@901�7 Table 12.2-1 (Continued) ASCE 7 Section Where Response Detailing Modification Deflection Requirements Coefficient, Overstrength Amplification Seismic Force -Resisting System Are Specified R° Factor, S2oA Factor, C' G. CANTILEVERED COLUMN SYSTEMS DETAILED TO CONFORM TO THE REQUIREMENTS FOR: 1, Slue] special cisuadkver ci4umn svShN1.1'',: 2. Steel ordinary cantilever column systems 3. Special reinforced concrete moment frames" 4. Intermediate reinforced concrete moment frames 5. Ordinary reinforced concrete moment frames 6. Timber frames 14, ] 2!/,? ) a'a 21/ 14.1 1'/ 11/a 12.2.5.5 and 21/2 1'/4 14.2 14.2 11/2 1'/4 14.2 1 11/4 14.5 11/2 11/2 H. STEEL SYSTEMS NOT 14.1 3 SPECIFICALLY DETAILED FOR SEISMIC RESISTANCE, EXCLUDING CANTILEVER COLUMN SYSTEMS 3 Structural System Limitations Including Structural Height, h, (ft) Limits` Seismic Design Category B Ci Dd Ed F,e 35 35 35 35 35 35 35 NP NP' NP' 35 35 35 35 35 35 35 NP NP NP 35 35 35 NP NP 1►1�►1�►1a►1a►1 "Response modification coefficient, R, for use throughout the standard. Note R reduces forces to a strength level, not an allowable stress level. aDelection amplification factor, Cd, for use in Sections 12.8.6, 12.8.7, and 12.9.2. `NL = Not Limited and NP = Not Permitted. For metric units use 30.5 m for 100 ft and use 48.8 to for 160 ft. 'See Section 12.2.5.4 for a description of seismic force -resisting systems limited to buildings with a structural height, h", of 240 ft (73.2 m) or less. `See Section 12.2.5.4 for seismic force -resisting systems limited to buildings with a structural height, h,,, of 160 ft (48.8 m) or less. tOrdinary moment frame is permitted to be used in lieu of intermediate moment frame for Seismic Design Categories B or C. 'Where the tabulated value of the overstrength factor, S2,,, is greater than or equal to 21/2, 0,, is permitted to be reduced by subtracting the value of 1/2 for structures with flexible diaphragms. 'See Section 12.2.5.7 for limitations in structures assigned to Seismic Design Categories D, E, or F. 'See Section 12.2.5.6 for limitations in structures assigned to Seismic Design Categories D, E, or F. 'Steel ordinary concentrically braced frames are permitted in single -story buildings up to a structural height, h„, of 60 ft (18.3 m) where the dead load of the roof does not exceed 20 psf (0.96 kN/m2) and in penthouse structures. 'An increase in structural height, hto 45 ft (13.7 m) is permitted for single story storage warehouse facilities 'In Section 2.2 of ACI 318. A shear wall is defined as a structural wall. In Section 2.2 of ACI 318, The definition of "special structural wall" includes precast and cast -in -place construction. "In Section 2.2 of ACI 318. The definition of "special moment frame" includes precast and cast -in -place construction. "Alternately, the seismic load effect with overstrength, Eh, is permitted to be based on the expected strength determined in accordance with AISI S I10. °Cold -formed steel — special bolted moment frames shall be limited to one-story in height in accordance with AISI S 110, 77 WC-42 SMALL CANOPIES DEAD AND SNOW COUGHLIN PORTERLUNDEEN LOADING CRITERIASTRUCTURAL CIVIL SPISMIC ENGINEERING F P�roiect: z -- Designed By: 4 C L Date: C73 bl� Project No. Client: Checked By: Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 t P 2M343.0460 / cplinc:ccWC_43 ... ERLUNDEEN `„Tr"e,UC T URAL.. Cl o SC. ;�, 11.;; ENGINEFRING WALKWA Y CANOPY DESIGN C POD DESIGN - DESIGN 801 SECOND AVENUE, s4 rrE goo ';,E,a!'4'L , 1'11` 9810 ' 2003430460 f _t p [,noc.tarn f,f , WC-44 / ✓' 'f Canopies at C Pod Classrooms COUGHLIN PORTER LUNDEEN STRUCTURAL • CIVIL • SEISMIC ENGINEERING 10 METAL ROOF DECK ' PER PLAN NOTE 6, ' 8W_0" TYP. AT CANOPIE5 f-0fv - ' T.O.5TEEL ' EL. = 111'-q%4 3" 555MIC JOINT TYP. AT COVERED YVALKWAY5 ' i 1 N N N 5-503 p M i O i HSS 12x6x 4 ' I 24 5-503 V tl 011 {� a W W Z J o' w F a' O d Z J 0 u 0 N L 00 T a 0 V Madrona K-8 Designed By: KCL Date: 03/24/2017 Project No: Client: Checked By: Sheet: 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343.0460 / cplinc.com WC-45 COUGHLINPORTERLUNDEEN C POD SEISMIC LOADING STRUCTURAL CIVIL SEISMIC ENGINEERING Project INA &-DION A Designed By: Date: 0 S117-4 t Proiect No. Client: Checked By: Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343.0460 / cplinc.c VVC-46 Company CPL Designer KCL IIIRISA Job Number S130282-01 Model Name C Pod Canopy Apr 10, 2017 4:12 PM Checked By__ Hot Rolled Steel Properties I qhPd F Ikqil C, rk--,il Nil I Thi-.rm MF r)P.n-,itx/rk/ft Yip-ldrk--,il Rv Rifkcil Rt 10 WT-Ire"? �. W- Irs Hot Rolled Steel Section Sets La bell Shape Type Design List -4ftterial Des ign Ru... A-M�ffj,�Wj,�WJE Beam RECT A500 Gr.46 Typical 1 20.9 CENTIME IT, SOME General Section Sets Label Shape Twe Material A [in2l lvv fin4l Izz [in4l J fin4l Built Up Column lBuilt Up Colum ... I Column I gen Steel 15 112 350 200 Joint Coordinates and Temperatures I ;;hA.1 x rfti Y ffti 7 rftl T,-mn rFI n...t2r.h Frr)m ni • - — ----- Mr.= • Joint Boundary Conditions —.9— ���ism��stam five, I" IL41 a wgg Lill Lei a �� &IMM 14111 IOU I �� &rn Lei I Lei RAM 141111 Lei 6 �� FAM Ling wi RISA-31D Version 15.0.1 \..AC Pods\C pods canopy - Built Up Column - JAW review.r3d] Page 1 WC-53 CPL Apr 10, 2017 KCL 4:12 PM S130282-01 Checked By__ C Pod Canopy Company Designer IIIRISA Job Number Model Name Joint Boundary Conditions (Continued) Inint I nhPI X fk /inl Y rk/inl 7 rk/inl X Rnt rk-ft/rpril Y Rnt fk-ft/rqrfl 7 Rnt rk-ft/rqril Joint Loads and Enforced Displacements (BLC 4: Earthquake, X) Joint Loads and Enforced Displacements (BLC 5: Earthquake, -Z) Joint Label Direction Maanitudef(k.k-ft). (in.rad). (k* SA2/f Joint Loads and Enforced Displacements (BLC 6: Earthquake, Z) Joint Label Direction Macinitudef(k,k-ft), (injad), (k* SA 2/f Member Distributed Loads (BLC I: Dead) KAPmF,.-r I qF)PI Nrpntinn Start KAnnnihiriPrk/ft F1 Fnri NAnrinifiviprk/ft F1 Start 1 r)r.ntir)nrft om Fnd I nrnfinnIft O/M MINE Member Distributed Loads (BLC 2: Snow) KAP mhp r I ;; hPI nirprtinn Rtnrt KAnnnihjriPrk-/ft R F:nri KAnnnifiifIP1k/ft FI Start I nnnfinnfft O/M Pnd I nrnfinnfft O/M MW Member Distributed Loads (BLC 3: Wind) KAP-mhpr I qhp-1 nirp-rtinn qtnrt KA;;nnihjHPrk-/ft F1 F:nri KAnnnifiifIP-1k/ft F1 qtprt I nrnfinnfft O/M Pnd I nrnfinnfft O/M --- -------- RISA-31D Version 15.0.1 \..AC Pods\C pods canopy - Built Up Column - JAW review.r3d] Page 2 WC-54 Company CPL Designer KCL IIIRISA Job Number S130282-01 Model Name C Pod Canopy Apr 10, 2017 4:12 PM Checked By__ Basic Load Cases RI (' np-qrrintinn ('.PtP-nnrx/ Y (,rpx/itx/ Y (-,rpx/itx/ 7 (-,rpx/itx/ Inint Pnint ni.-,trihitpri An-n(NAP. qiirfiRrP-(P Load Combinations n..qn-rintinn qnix/p Pns-it;, ',R.q.';Rl ('.Far RI (.FAr RI C Far RI (.Fqn RI ('.Far RI CIPAn RI (:Far RI ('.Fnr, RI C'.F;;r, RI (-.Fqn Joint Reactions I C'. Anint I Phi-d Y rk1 Y rkI 7 rkI RAY fk-ftl MY rk-ftl M7 rk-ftl RISA-31D Version 15.0.1 \..AC Pods\C pods canopy - Built Up Column - JAW review.r3d] Page 3 WC-55 Company CPL Designer KCL 111RISA) Job Number S130282-01 Model Name C Pod Canopy Joint Reactions (Continued) Apr 10, 2017 4:12 PM Checked By__ LC Joint Label X [kj Y [kl Z [k] MX [k-ftl MY fk-ftj MZ [k-ft] OEM= MOM off-MIKSM N- -MMM ---------- M-1 I ............................... I MEMISM o • NO Joint Deflections LC a rej Joint Label x RISA-31D Version 15.0.1 \..AC Pods\C pods canopy - Built Up Column - JAW review.r3d] Page 4 WC-56 RISA-31D Version 15.0.1 \..AC Pods\C pods canopy - Built Up Column - JAW review.r3d] Page 4 WC-56 CPL Apr 10, 2017 KCL 4:12 PM S130282-01 Checked By__ C Pod Canopy Company Designer 111RISA) Job Number Model Name MemberAISC 14th(360-10): LRFD Steel Code Checks (Continued) LC Member Shape I Max Loc[ftl Shear ... Loc[ftl Dir phi*Pnc[kl phi*Pntfkl phi*Mn... phi*Mn... Cb Eqn loom MM mm=w#r.,i-.mm MIMM MEMO" E SOMMOMMEM SOMMOMMEM RISA-31D Version 15.0.1 \...\...\C pods canopy - Built Up Column - JAW review.r3d] Page 10 WC-62 ... ERLUNDEEN `„Tr"e,UC T URAL.. Cl o SC. ;�, 11.;; :i ,I ,: t: t. t�.%7 s:= WALKWA Y CANOPY DESIGN C POD DESIGN - CONNECTION TO BUILDING ,801 ,S(4MND AVENUE. SU .T"E 900 SEAl"TE_EWA 98t01:,` P 206,343,06ik .rs p (, sco,',earrt WC-63 COUGHLIN PORTER LUNDEEN STRUCTURAL • CIVIL • SEISMIC ENGINEERING Area C �/////T/�/ METAL ROOF DECK PER PLAN NOTE 6, TYF. AT GANOFIE5 3" 5E15MIG JOINT TYF. AT GOVERED AALK/W5 ' TO, 5TEEL = fl 1'-gY4 EEL. ��/ 2 N N H5516x8xY2 O a 0 26-1" 5EE GRID 10/D FOR 3" 5E15MIG 51MILAR FRAMING JOINT TI-PLY TR 4UN6 PAR On TYP ry 5 %0 I ------ - HU5212 MAX HANGER (INVERTED) - GONT'R �i TO GOORD GOMPATABILII Y WITH TRU55 MFR. O TRU55 MFR TO DE516N TRU55E5 FOR LOAD IN DOWNWARD LOADING FOR 2k DEAD LOAD L 5 %W 5 AND 3.5k 5N' W LOAD (SERVICE). 6L 5 % 15 HC5212 HANGER - C.ONT'R TO C.00RD GOMFATABILITY WITH TRU55 MFR. TRU55 MFR TO DESIGN TRU55E5 FOR LOAD )3 IN UPWARD DIRECTION FOR O.'Ik DEAD LOAD ND 1.2k 5NOW LOAD (SERVICE) •• Project: Madrona K-8 Designed By: LAN Date: Project No: Client: Checked By: Sheet: 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343.0460 / cplinc.com WC-64 91 54 l ;' ; } b • i ik fl } �� Y 5 '�,uag ,i STRUCTURAL civIL SEISMIC ENGINEERING Project: Designed By: Date: Project No. Client: Checked By: Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 T P 206.343.0460 1 cplinc.comWC-65 Madrona K-8 LAN 4/5/17 CANOPY SUPPORT IN BLDG C Design for DL+SL Case since added to reduce deflection of canopy from DL+SL Reaction from HSS from Canopy Reaction L = 26 ft trib = 6.25 ft DL = 16 psf 100 plf SL = 28 ' psf 175 plf DL Rxn = 1.3 kip SL Rxn = 2.3 kip Beam Supporting HSS from Canopy Beam Design Cd = 1.15' Cant L = 4.0 + ft Backspan L = 8.0 ft DL Pt load = 1.3 kip SL Pt load = 2.3 kip TL Pt load = 3.6 kip Mmax = 14.4; kip-ft Vmax = 3.6 kip Cantilever: SL Defl Limit = 0.200 in (2L/480) SL Defl = 0.009 in El required (SL) = 45 lb-in2 TL DO Limit = 0.400 in (2L/24) TL Defl = 0.014 in El required (TL) = 35 lb-in2 El, required (governing) = 45 lb-in2 Backspan: SL Defl Limit = 0.200 in (L/480) SL Defl = 0.002 in El required (SL) = 10 lb-in2 x10^6 TL DO Limit = 0.400 in (L/24) TL Defl = 0.004' in El required (TL) = 10 lb-in2 x10^6 El, required (governing) = 10 lb-in2 x10^6 Design = GL 5 1/8 x 18 WC-66 Madrona K-8 LAN Mallow = 59.0kip-ft Vallow = 18.7'' kip El = 4483 lb-in2 x10^6 Hanger Design Use = HUS212 Capacity = 9.6 kip (downwards) Left rxn = 5.4 kip OK Use inverted hanger to orient hanger in strong direction Right rxn = -1.8 kip OK Use regular hanger to orient hanger in strong direction Truss Supporting Above Beam (- Beam Reactions Negative indicates downward rxn Reactions (5.4k TL): Left rxn (DL) = 2.0 kip Left rxn (SL) = 3.5 kip Reactions (1.8k TL): Right rxn (DL) _ -0.7 kip Right rxn (SL) _ -1.2 kip Reactions Acting on Truss Same load, opposite direction from beam reactions Cant. Beam in Bldg Supporting Trusses - Truss Reactions from 5.4k TL Left rxn (DL) = 2.6 kip «on cant. Beam Left rxn (SL) = 4.5 kip «on cant. Beam Left rxn (TL) = 7.1 kip «on cant. Beam Right rxn (DL) _ -0.6 kip «on girder truss Right rxn (SL) _ -1.1 kip «on girder truss Right rxn (TL) _ -1.7 kip «on girder truss Truss Reactions from 1.8k TL Left rxn (DL) _ -0.9 kip «on cant. Beam Left rxn (SL) _ -1.5 kip «on cant. Beam Left rxn (TL) _ -2.4 kip «on cant. Beam Right rxn (DL) = 0.2 kip «on girder truss Right rxn (SL) = 0.4 kip «on girder truss 4/5/17 WC-67 Madrona K-8 LAN 4/5/17 Right rxn (TL) = 0.6 kip «on girder truss Controlling Truss Reactions on Cant. Beam The upward reactions will govern (are downwards on cant. beam so add to other gravity loading) Left rxn (DL) = 2.6 kip Left rxn (SL) = 4.5 kip Left rxn (TL) = 7.1 kip Place these loads at 5' from cant. support Other Loading on Cant. Beam DL = 526 plf SL = 921 plf Beam Design Cd = Cant L = Backspan L = Mmax = Vmax = Cantilever: SL Defl Limit = SL Defl = El required (SL) _ TL Defl Limit = TL Defl = El required (TL) _ El, required (governing) _ Backspan: SL Defl Limit = SL Defl = El required (SL) _ TL Defl Limit = TL Defl = El required (TL) _ El, required (governing) _ Design = Mallow = Vallow = El = 0.363 0.077 212. 0.725 0.122 168 212 ft ft kip-ft kip in (2L/480) in lb-in2 in (2L/24) in lb-in2 lb-in2 in (L/480) in lb-in2 x10^6 in (L/24) in lb-in2 x10^6 lb-in2 x10^6 kip-ft kip lb-in2 x10^6 WC-68 Column Supporting Cant. Beam (C-1) DLtuColumn = 12.298 kip 3LtoColumn = 21.464 kip Factor TLtoColumn = 49.1 kip(LRFD) Column Size = Height = 10 ft From AISCTable 4'4: Capacity Footing for Column Load= Type B footing capacity = 33.8 kip(ASD) 59.2 Np(ASD) OK Madrona K-8 LAN 4/5/17 Reaction from HSS from Canopy Reaction DL Rxn = 1.3 kip SL Rxn = 2.3 kip Beam Supporting HSS from Canopy ... ) Beam Design Design = GL 5 1/8 x 18 Hanger Design Use = HUS212 Truss Supporting Above Beam T° ) Beam Reactions Negative indicates downward rxn Reactions (5.4k TL): Left rxn (DL) = 2.0 kip Left rxn (SL) = 3.5 kip Reactions (1.8k TL): Right rxn (DL) = -0.7 kip Right rxn (SL) = -1.2 kip Reactions Acting on Truss Same load, opposite direction from beam reactions Cant. Beam in Bldg Supporting Trusses -3) Truss Reactions from 5.4k TL Left rxn (DL) = 2.5 kip «on cant. Beam Left rxn (SL) = 4.3 kip «on cant. Beam Left rxn (TL) = 6.8 kip «on cant. Beam Right rxn (DL) = -0.5 kip «on girder truss Right rxn (SL) = -0.9 kip «on girder truss Right rxn (TL) = -1.4 kip «on girder truss Truss Reactions from 1.8k TL Left rxn (DL) = -0.8 kip «on cant. Beam Left rxn (SL) = -1.4 kip «on cant. Beam Left rxn (TL) = -2.3 kip «on cant. Beam WC-70 Madrona K-8 LAN 4/5/17 Right rxn (DL) = 0.2 kip «on girder truss Right rxn (SL) = 0.3 kip «on girder truss Right rxn (TL) = 0.5 kip «on girder truss Controlling Truss Reactions on Cant. Beam The upward reactions will govern (are downwards on cant. beam so add to other gravity loading) Left rxn (DL) = 2.5 kip Left rxn (SL) = 4.3 kip Left rxn (TL) = 6.8 kip Place these loads at 5' from cant. support Other Loading on Cant. Beam Cant DL = 392 plf Cant SL = 686 plf Backspan DL = 453 plf Backspan SL = 577 plf Beam Design Refer to RAM Sbeam calc Cant L = 8.3 ft Backspan L = 6.8 ft SL defl limit = L/480 DL defl limit = L/240 Use = W10x54 Column Supporting Cant. Beam DL to Column = 11.99 kip SL to Column = 22.9 kip Factor TL to Column = 51.0 kip (LRFD) Column Size = HSS 4x4x1/4 Height = 12 ft From AISC Table 4-4: Capacity = Footing for Column Load = Type B footing capacity = 34.9 kip (ASD) 59.2 kip (ASD) ©K WC-71 Gravity Beam Design RAM SBeam v4.0 Licensed to: RAM International STEEL CODE: AISC360-05 LRFD SPAN INFORMATION (ft): I -End (0.00,0.00) J-End (15.00,0.00) Maximum Depth. Limitation specified = 10.50 in Beam Size (Optimum) = W I OX54 Total Beam Length (ft) = 15.00 Cantilever on right (ft) = 8.25 Mp (kip-ft) = 277.50 Top flange braced by decking. POINT LOADS (kips): Flange Bracing Dist (ft) DL LL Top Bottom 11.750 2.50 0.00 No No 11.750 0.00 6.80 No No LINE LOADS (k/ft): Load Dist (ft) DL LL 1 0.000 0.054 0.000 6.750 0.054 0.000 2 6.750 0.054 0.000 15.000 0.054 0.000 3 6.750 0.392 0.000 15.000 0.392 0.000 4 6.750 0.000 0.686 1.5.000 0.000 0.686 5 0.000 0.453 0.000 6.750 0.453 0.000 6 0.000 0.000 0.577 6.750 0.000 0.577 04/05/17 14:58:00 Fy = 50.0 ksi SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 27.35 kips I.00Vn=112.11 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi kip-ft ft ft Center Max + 1.2DL+1.6LL 0.0 0.2 0.0 Max - 1.2DL+1.6LL -125.0 6.8 6.8 Right Max - 1.2DL+1.6LL -125.0 6.8 8.3 Controlling 1.2DL+1.6LL -125.0 6.8 8.3 REACTIONS (kips): Left Right DL reaction -2.39 11.99 Max +LL reaction 1.95 22.90 Max -LL reaction -8.50 0.00 Max +total reaction (factored) -3.34 51.03 Max -total reaction -16.46 1.6.78 DEFLECTIONS: 1.00 0.90 1.72 0.90 1.00 0.90 1.00 0.90 Phi*Mn kip-ft 249.75 249.75 249.75 249.75 WC-72 Gravity Beam Design RAM SBeam v4.0 Licensed to: RAM International Center span: Dead load (in) Live load (in) Net Total load (in) Right cantilever: Dead load (in) Pos Live load (in) Neg Live load (in) Pos Total load (in) Page 2/2 04/05/17 14:58:00 at 3.91 ft = 0.013 L/D = 6094 at 3.91 ft = 0.033 L/D = 2458 at 3.91 ft = 0.046 L/D = 1751. _ -0.182 L/D = 1090 _ -0.397 L/D = 498 = 0.012 L/D = 16506 _ -0.579 L/D = 342 WC-73 ... ERLUNDEEN `„Tr"e,UC T URAL.. Cl o SC. ;�, 11.;; :i ,I ,: t: t. t�.%7 s:=.. WALKWA Y CANOPY DESIGN D POD DESIGN - DESIGN 801 SECOND AVENUE, S t I FT :.' t1 0 0 r tom.. S E A x. T L E, WA 8 � d . , , ,.ia''� Cf �.....e I_ .Y �:, <. e..t 206 t ,f 6 H 31 ... WC-74 Canopies at D Pod Classrooms COUGHLIN PORTER LUNDEEN STRUCTURAL • CIVIL • SEISMIC ENGINEERING Madrona K-8 Designed By: KCL Date: 04/ 12/2017 Project No: Client: Checked 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343.0460 / cplinc.com Sheet: WC-75 COUGHLIN PORTERLUNDEEN 0 i'-j cn STRUCTURAL CIVIL SEISMIC ENGINEERING YVZ- CAS COLPt Ael ^1 -- o N 0 VA-i ok, c 11 v\/ cl1 r, t-1 (i/-- X- S r ot = 6. G h S c C-4- z ul w a z ca z 0 w f O ol u I Arq& qe sIgned By: Date - Project No.Client: Checked By: Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 1 P 206,34M460 T cplinc.c OWC-76 Company CPL Designer KCL IIIRISA Job Number S130282-01 Model Name D Pods Canopy Apr 10, 2017 4:26 PM Checked By__ Hot Rolled Steel Properties I qhPd F Ikqil C, rk--,il Nil I Thi-.rm MF r)P.n-,itx/rk/ft Yip-ldrk--,il Rv Rifkcil Rt 10 WT-Ire"? �. W- Irs Hot Rolled Steel Section Sets La bell Shape Type Design List -4ftterial Des ign Ru... A-M�ffj,�Wj,�WJE �Ilw MEN M" Column Pipe A53 Gr. B Typical 1, 11.9 Joint Coordinates and Temperatures I qhPI Y rfti Y Ri 7 rfti Tpmn rFi nf-t;,.h Frr)m ni --- ---------- ---------- ��� I - ------------ Joint Boundary Conditions Joint Label X Ik/inj Y rk/inj Z [k/inj X Rot.rk-ft/rad] Y Rot.[k-ft/rad] Z Rot. k-ft/rad] F1 N1 Reaction Reaction Reaction Reaction Reaction Reaction 3 1 N5 Joint Loads and Enforced Displacements (BLC 4: Earthquake, X) Joint Label L,D,M Direction Macinitidef(k,k-ft), (in,rad), (k*s'2/f... RISA-3D Version 15.0.1 [PA...\...\...\SteeI\SrnaII Canopies at Classrooms\D Pods\D pods canopy.r3d] Page 1 WC-83 Company CPL Designer KCL IIIRISA Job Number S130282-01 Model Name D Pods Canopy Apr 10, 2017 4:26 PM Checked By__ Joint Loads and Enforced Displacements (BLC 5: Earthquake, Z) Joint Label L.D.M Direction Maanitudef(k.k-ft). (in.rad). (k*s'2/f Member Distributed Loads (BLC I: Dead) MP rnhp r I q hPI nirpnfinn Start M;;nnifijriPrkIft FI Fnri M2rjnittj(iPrk/ft F1 Start I n(,.;;fionfft%I Fnd I ri(-,,qfionrft ou Member Distributed Loads (BL C 2: Snow) MP rnhp r I q hPI Dirpnfinn I;t;;rt M;;nnihjriPrk/ft R Fnd M;annittjdP[k/ft F1 1;t;;rt I nr;;fionfft %I Fnd I nr,,qfinnrft %1 MINE lu� — ----- - - -------- — — --------- Member Distributed Loads (BLC 3: Wind) MP mhp r I q hPI nirpr.tinn I;t;;rt M;;nnihjriPrk/ft R Fnd M;;nnittjdp[k/ft FI I;tqrt I nr;ationfft %I Fnd I nr,;;finn[ft %I — ---------- Basic Load Cases RI C Dpqnrinfinn (itpnnry X Gravity Y Gravity 7 Gravity Inint Pnint r)iqtrihtjtp.(i Arp;;(Mp Stirfanp(P Load Combinations nt---,r.rinfinn SnivPPnPlta SRSSRI CFar. Rl('Fqr. Rl('F;;r. Rl('Fqr. RI ('Far. Rl('Fqr. Rl('Fqr. RI ('Far. Rl('Fqr. RI ('Far. rol FZI WE RISA-3D Version 15.0.1 [P:\...\...\...\Steel\Small Canopies at Classrooms\D Pods\D pods canopy.r3d] Page 2 WC-84 Company CPL Designer KCL IIIRISA Job Number S130282-01 Model Name D Pods Canopy Apr 10, 2017 4:26 PM Checked By__ Load Combinations (Continued) Description Solve PDelta SRSSBLC Fac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac..BLCFac 10 1 W Only IYes I Y 1 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Joint Reactions LC Joint Label X fkI Y [kI z rk] MX fk-ft] MY fk-ft] MZ rk-ft]. -ENE= IM was In melffmi "Ill!': 11:111���EEEHSJ= mn� MEMMM RISA-3D Version 15.0.1 [P:\...\...\...\Steel\Small Canopies at Classrooms\D Pods\D pods canopy.r3d] Page 3 WC-85 CPL Apr 10, 2017 KCL 4:26 PM S130282-01 Checked By__ D Pods Canopy Company Designer IIIRISA Job Number Model Name MemberAISC 14th(360-10): LRFD Steel Code Checks (Continued) LC Member Shape UC Max Loc[ftj Shear ... Loc[ftj Dir phi*Pnc[kl phi*Pntfkl phi*Mn... phi*Mn... Cb Eqn mffl�=Wz. We, NO RISA-3D Version 15.0.1 [PA...\..A...\SteeI\SrnaII Canopies at Classrooms\D Pods\D pods canopy.r3d] Page 9 WC-91 ljf .' fFf Frf fr.. f f, WALKWA Y CANOPY DESIGN D POD DESIGN -CONNECTION DESIGN WC-92 � f Plate Bending Capacity Check at D '•• Canopy COUGHLIN PORTER LUNDEEN STRUCTURAL • CIVIL • SEISMIC ENGINEERING � BEAM/COL. BEYOND FOR ( ALL -OUTS IN COMMON 5EE DETAIL 24/5-503 /4 4 BENT t %4 x 6 PER PLAN 3/i6 V2-15 %4 V2- GONT. WT 2x6.5 BEAM PER PLAN PER P1 Maximum Bending Moment 10.4 k-ft (factored) M6, LC 5 18 - � BEAM/COL. BEYOND T.O.5TEEL EL. PER PLAN (— WT PER PLAN I ----- ROOF DECK / PER PLAN 1 BEAM PER - PLAN / ---------- /4 CONN. PER 6/5-501010 fE %2'xb" CONDITION) V 1 24 Project: Madrona K-8 Designed By: KCL Date: 04/ 14/2017 Project No: Client: Checked By: Sheet: 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343.0460 / cplinc.com WC-93 JPlate and Bars in Bending COUGHLINPORTERLUNDEENI jProject: Madrona K-8 (Engineer: KCL I I I Date: 04/1412017 1 Unbraced Length 050 ft Plate Height 10.00 in Plate Thickness 0.500 in C, --- 1.00 (1.00 may be used for all cases) E 29000 ksi IFY 361 ksi AISC 13th Edition, Section F11: Sx = 8.33 in' Zx = 12.50 in' 0.08E/Fy = 64.4 1.9E/Fy = 1530.6 L,d/t2 = 240.0 Yielding For Lhd/t2<= 0.08E/F IMn=M P=FYZ<=1.6FY sx= 450.01k-in (F1 1-1) Lateral Torsional Buckling For 0.08E/F-<L�d/e-1.9E/F Mn=Cb[1.52-0.274(Lbd/t)Fy/E]M,<=Mp= 431.5 k-in (F1 1-2) For Lhd/t2>1 .9E/F, F,=1.9EC,/(Lbd/e)= 229.61 ksi (F1 1-4) Mn =FcrSx<=M P= 450.0 k-in (F1 1-3) Governing Case JMn = 431.5 k-in (F1 1-2) 7 Mr,=0.9*M,,= 388A 7 32361 ASID M17 =MIl .67= 1 25A84 k-in 21M k-ft WC-94 ... ERLUNDEEN `„Tr"e,UC T URAL.. Cl o SC. ;�, 11.;; :E ,I ,: t: t. t�.%7 s:= WALKWA Y CANOPY DESIGN C POD AND D POD CANOPIES - FOOTING DESIGN 8,01 SECOND AVENUE, ti UFTE :`)00 _SEA LF', WA 98 iOd P 206, c� 3,04�f Hnc,cornEx, r { WC-95 ,! COUGHLINPORTERLUNDEEN STRUCTURAL CIVIL SEISMIC ENGINEERING WZ�LLW- -Ul- IS L =2-7 (QLK/Kf4 toArb: b- Ljr-t- S L 0 it- W fir q 7, CO All + o vj i C., ST7 I - It lo 50 ec r t- z z 2 O o ul Project:{ AWoA A Designed B Date: L / 0 i�-7— Project No. Client: Checked By: Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.34M460 / oplinc.c WC-96 COUGHLINP RTLRLUNDEEN w, I ., o-`4 i K.. ;k .. w Project Job Ref. Section Sheet no./rev. 801 2nd Ave Ste 900 Seattle, WA 98104 Calc. by Date Chk'd by Date App'd by Date P 206.343.0460 K 4/14/2017 COMBINED FOOTING ANALYSIS AND DESIGN (ACI318-11) Combined footing details Length of combined footing Width of combined footing Area of combined footing Depth of combined footing Depth of soil over combined footing Density of concrete Column details Column base length Column base width Column eccentricity in x Column eccentricity in y Soil details Density of soil Angle of internal friction Design base friction angle Coefficient of base friction Allowable bearing pressure Axial loading on column Dead axial load on column Live axial load on column Wind axial load on column Total axial load on column Foundation loads Dead surcharge load Live surcharge load Footing self weight ------ 1' 8" ----- I'* ------------------------------T 8"-------------------------------' 6' L=6.000ft B = 4.000 ft A = L + B = 24.000 ft2 h = 30.000 in hscn = 18.000 in t,4=c = 150.0 Ib/ft3 IA = 8.000 in bA = 8.000 in ePXA =-12.000 in epyA = 0.000 in mac;; = 120.0 Ib/ft3 = 25.0 deg = 19.3 deg tan(—) = 0.350 Pbesnng = 4.000 ksf PGA = -3.100 kips PQA = -3.600 kips PWA = 0.000 kips PA = -6.700 kips FGsur = 0.000 ksf FQsur = 0.000 ksf Fswt = h + t,4;onc = 0.375 ksf 00 -fi- 00 V TEDDS calculation version 2.0.05.06 WC-97 COUGHLINP RTFRLUNDEEN w, I ., o-`4 i K.. ;k .. w Project Job Ref. Section Sheet no./rev. 801 2nd Ave Ste 900 2 Seattle, WA 98104 Calc. by Date Chk'd by Date App'd by Date P 206.343.0460 K 4/14/2017 Soil self weight Total foundation load Horizontal loading on column base Dead horizontal load in x direction Live horizontal load in x direction Wind horizontal load in x direction Total horizontal load in x direction Dead horizontal load in y direction Live horizontal load in y direction Wind horizontal load in y direction Total horizontal load in y direction Check stability against uplift Resistance to column uplift Check stability against sliding Resistance to sliding due to base friction Passive pressure coefficient Stability against sliding in x direction Fsoii = hsoii + t-,�oii = 0.180 ksf F = A + (FGsur + FQsur + Fswt + Fsoii) = 13.320 kips HGxA = 0.000 kips HQXA = 1.000 kips HWxA = 0.000 kips HxA = 1.000 kips HcyA = 0.000 kips HQyA = 0.000 kips HwyA = 0.000 kips HyA = 0.000 kips Fres = (FGsur + Fswt + Fsoii) ± A = 13.320 kips PASS - Weight of pad footing exceeds column uplift Kriction = max([PGA + PQA + (FGsur + Fswt + Fsoii) ± A], 0 kips) ± tan(—) = 2.318 kips Kp = (1 + sin(,)) / (1 - sinO) = 2.464 Passive resistance of soil in x direction Hxpas = 0.5 ± Kp ± (h2 + 2 ± h ± hsoii) ± B ± �oii = 8.131 kips Total resistance to sliding in x direction Hxres = Htriction + Hxpas = 10.449 kips PASS - Resistance to sliding is greater than horizontal load in x direction Check stability against overturning in x direction Total overturning moment MxOT = MxA + HxA ± h = 2.500 kip_ft Restoring moment in x direction Foundation loading Mxsur = A + (FGsur + Fswt + Fsoii) ± L / 2 = 39.960 kip_ft Axial loading on column Mxaxiai = (PGA + PQA) ± (L / 2 - ePxA) _-26.800 kip_ft Total restoring moment Mxres = Mxsur + Mxaxiai = 13.160 kip_ t PASS - Restoring moment is greater than overturning moment in x direction Calculate base reaction Total base reaction T = F + PA = 6.620 kips Eccentricity of base reaction in x eTx = (PA ± ePxA + MxA + HxA ± h) / T = 16.677 in Eccentricity of base reaction in y eTy = (PA + epyA + MyA + HyA ± h) / T = 0.000 In Check base reaction eccentricity abs(eTx) / L + abs(ery) / B = 0.232 Base reaction acts outside of middle third of base Calculate base pressures q, = 0.000 ksf q2 = 0.000 ksf q3 = 2 ± T / [3 ± B ± (L / 2 - abs(eTx))] = 0.685 ksf q4 = 2 ± T / [3 ± B ± (L / 2 - abs(eTx))] = 0.685 ksf Minimum base pressure gmin = min(q,, q2, q3, q4) = 0.000 ksf WC-98 COUGHLINP RTLRLUNDEEN -, I ., o-`4 i K.. ;k .. w Project Job Ref. Section Sheet no./rev. 801 2nd Ave Ste 900 3 Seattle, WA 98104 Calc. by Date Chk'd by Date App'd by Date P 206.343.0460 K 4/14/2017 Maximum base pressure 0.000 ksf 0.000 ksf gmax = max(q,, q2, q3, q4) = 0.685 ksf PASS - Maximum base pressure is less than allowable bearing pressure ----------- - ------ ] 0.685 ksf 0.685 ksf -------------- Load combination factors for loads Load combination factor for dead loads yG = 1.20 Load combination factor for live loads yQ = 1.60 Load combination factor for wind loads Im = 0.00 Strength reduction factors Flexural strength reduction factor = 0.90 Shear strength reduction factor 0 = 0.75 Ultimate axial loading on column Ultimate axial load on column PuA = PGA± }fG + PQA± } Q + PWA± Im = -9.480 kips Ultimate foundation loads Ultimate foundation load Fu = A ± [(FGsur + Fswt + Fsoii) ± )fG + Fasur ± }fa] = 15.984 kips Ultimate horizontal loading on column Ultimate horizontal load in x direction HXuA = HGXA ± }fG + HaxA ± }fQ + HWxA ± pw = 1.600 kips Ultimate horizontal load in y direction HyuA = HGyA ± }fG + HQyA ± }fQ + HwyA ± }fw = 0.000 kips Ultimate moment on column Ultimate moment on column in x direction MXuA = MGXA ± YG + MQXA ± JfQ + MWxA ± Im = 0.000 kip_ft Ultimate moment on column in y direction MyuA = MGyA ± }fG + MQyA ± }fQ + MwyA ± }fw = 0.000 kip_ft Calculate ultimate base reaction Ultimate base reaction Tu = F. + PuA = 6.504 kips Eccentricity of ultimate base reaction in x eTxu = (PuA ± ePxA + MXuA + HXuA ± h) / Tu = 24.871 in Eccentricity of ultimate base reaction in y eTyu = (PuA ± ePyA + MyuA + HyuA ± h) / Tu = 0.000 in Calculate ultimate base pressures qtu = 0.000 ksf q2u = 0.000 ksf WC-99 COUGHLINP RTLRLUNDEEN w, I ., o-`4 i K.. ;k .. w Project Job Ref. Section Sheet no./rev. 801 2nd Ave Ste 900 4 Seattle, WA 98104 Calc. by Date Chk'd by Date App'd by Date P 206.343.0460 K 4/14/2017 q3u = 2 ± T. / [3 ± B ± (L / 2 - abs(eTxu))] = 1.169 ksf q4u = 2 ± Tu / [3 ± B ± (L / 2 - abs(eTxu))] = 1.169 ksf Minimum ultimate base pressure gminu = min(q,u, q2u, q3u, q4u) = 0.000 ksf Maximum ultimate base pressure gmaxu = max(q,u, q2u, q3u, q4u) = 1.169 ksf Calculate rate of change of base pressure in x direction Left hand base reaction fug _ (qiu + q2u) ± B / 2 = 0.000 kips/ft Right hand base reaction fuR = (q3u + q4u) ± B / 2 = 4.675 kips/ft Length of base reaction Lx = 3 ± (L / 2 - eTxu) = 33.387 in Rate of change of base pressure Cx = (fuR - fug) / Lx = 1.680 kips/ft/ft Calculate footing lengths in x direction Left hand length Right hand length Calculate ultimate moments in x direction Ultimate positive moment in x direction Position of maximum negative moment Ultimate negative moment in x direction LL=L/2+ePxA=2.000ft LR=L/2-ePxA=4.000ft Mx = - Fu ± ILL / (2 ± L) + HxuA ± h = -1.328 kip_ft LZ = 2.000 ft Mxneg = - Fu + LL2 / (2 + L) Mxneg = -5.328 kip_ft Calculate rate of change of base pressure in y direction Top edge base reaction fur = (q2u + q4u) ± L / 2 = 3.506 kips/ft Bottom edge base reaction fuB = (qtu + q3u) ± L / 2 = 3.506 kips/ft Length of base reaction Ly = B = 4.000 ft Rate of change of base pressure Cy = (fuB - fuT) / Ly = 0.000 kips/ft/ft Calculate footing lengths in y direction Top length Bottom length Calculate ultimate moments in y direction Ultimate positive moment in y direction Position of maximum negative moment Ultimate negative moment in y direction Material details Compressive strength of concrete Yield strength of reinforcement Cover to reinforcement Concrete type Concrete modification factor Negative moment design in x direction Reinforcement provided Depth of tension reinforcement Area of tension reinforcement provided Area of compression reinforcement provided Minimum area of reinforcement LT=B/2+epyA=2.000ft LB=B/2-epyA=2.000ft My=fuB±LZ2/2-Cy±LZ3/6-Fu±LZ2/(2±B)=-0.979 kip_ft LZ = 2.000 ft Myneg=fuT±LT2/2+Cy+LT3/6-Fu±LT2/(2±B) Myneg = -0.979 kip_ft fo = 3000 psi fy = 60000 psi cnom = 3.000 in Normal weight = 1.00 6 No. 6 bars top and 6 No. 5 bars bottom dx = h - Cnom - MT - TIT / 2 = 26.000 in As_xT_prov = NxT ± E MT2 / 4 = 2.651 in As_xB_prov = NxB + <-->E vycB2 / 4 = 1.841 in Asxmin=0.0018+h+B=2.592in2 WC-100 COUGHLINP RTLRLUNDEEN w, I ., o-`4 i K.. ;k .. w Project Job Ref. Section Sheet no./rev. 801 2nd Ave Ste 900 5 Seattle, WA 98104 Calc. by Date Chk'd by Date App'd by Date P 206.343.0460 K 4/14/2017 Spacing of reinforcement sxT_prov = (B - 2 + cnom) / max(NxT - 1, 1) = 8.400 in Maximum spacing of reinforcement smax = min(3 ± h, 18in) = 18.000 in PASS - Reinforcement provided exceeds minimum reinforcement required Depth of compression block ax = As_xT_prov ± fy / (0.85 ± f'o ± B) = 1.30 in Neutral axis factor Al = 0.85 Depth to the neutral axis cna_x = ax / At = 1.53 in Strain in reinforcement t t_x = 0.003 ± (dx - cna_x) / Cna_x = 0.04802 PASS - The section has adequate ductility (cl. 10.3.5) Nominal moment strength required Mnyneg = abs(Mxneg) /,51 = 5.920 kip_ft Moment capacity of base Mcapxneg = As_xT_prov ± fy ± [dx - (As_xT_prov ± fy / (1.7 ± f'o ± B))] Mcapxneg = 335.983 kip_ft PASS - Moment capacity of base exceeds nominal moment strength required Negative moment design in y direction Reinforcement provided Depth of tension reinforcement Area of tension reinforcement provided Area of compression reinforcement provided Minimum area of reinforcement Spacing of reinforcement Maximum spacing of reinforcement Depth of compression block Neutral axis factor 7 No. 5 bars top and 7 No. 5 bars bottom dy = h - Cnorn - tyT / 2 = 26.687 in As_yT_prov = NyT ± <--)� VyT2 / 4 = 2.148 in2 As_yB_prov = NyB ± <-.)� tjyB2 / 4 = 2.148 in2 As_y_min = 0.0018 ± h ± L = 3.888 in2 SyT_prov = (L - 2 + Cnom) / max(NyT - 1, 1) = 11.000 in sma), = min(3 ± h, 18in) = 18.000 in PASS - Reinforcement provided exceeds minimum reinforcement required ay = As_yT_prov ± fy / (0.85 ± f'c ± L) = 0.70 in Al = 0.85 Depth to the neutral axis Cna_y = ay / Ai = 0.83 in Strain in reinforcement t t_y = 0.003 ± (dy - Cna_y) / Cna_y = 0.09397 PASS - The section has adequate ductility (cl. 10.3.5) Nominal moment strength required Mnyneg = abs(Myneg) / d = 1.088 kip_ft Moment capacity of base Mcapyneg = As_yT_prov ± fy ± [dy - (As_yT_prov ± fy / (1.7 ± fo ± L))] Mcapyneg = 282.799 kip_ft PASS - Moment capacity of base exceeds nominal moment strength required Calculate ultimate shear force at d from right face of column Ultimate pressure for shear d from face of column qsu = (q3u - Cx ± (L / 2 - eP),A - IA / 2 - dx) / B + q4u) / 2 qsu = 0.854 ksf Area loaded for shear at d from face of column As = B ± min(3 ± (L / 2 - eTx), L / 2 - ePxA - IA / 2 - dx) = 6.000 ft2 Ultimate shear force at d from face of column Shear design at d from right face of column Strength reduction factor in shear Nominal shear strength Concrete shear strength Vsu = As ± (qsu - F. / A) = 1.127 kips to = 0.75 Vnsu = Vsu / tU = 1.502 kips Vo_s = 2 ± '± (fc ± 1 psi) ± (B ± dx) = 136.712 kips PASS - Nominal shear strength is less than concrete shear strength Calculate ultimate punching shear force at perimeter of d / 2 from face of column Ultimate pressure for punching shear gpuA = q4u-[(L/2-ePxA-IA/2-d/2)+(IA+2+d/2)/2]+Cx/B+[B/2]±Cy/L WC-101 COUGHLINP RTFRLUNDEEN w, I ., o-`4 i K.. ;k .. w Project Job Ref. Section Sheet no./rev. 801 2nd Ave Ste 900 6 Seattle, WA 98104 Calc. by Date Chk'd by Date App'd by Date P 206.343.0460 K 4/14/2017 Average effective depth of reinforcement Area loaded for punching shear at column Length of punching shear perimeter Ultimate shear force at shear perimeter gpuA = -0.512 ksf d=(dX+dy)/2=26.344in ApA = (IA+2±d/2)+B = 11.448 ft2 upA=2±B=8.000ft VpuA = PuA + (Fu / A - gpuA) + ApA = 4.001 kips Punching shear stresses at perimeter of d / 2 from face of column Nominal shear strength VnpuA = VpuA / t�p = 5.334 kips Ratio of column long side to short side AA = max(IA, bA) / min(IA, bA) = 1.000 Column constant for edge column >sA = 30 Concrete shear strength Vc_p_; _ (2 + 4 / /\A) ± ± (f. ± 1 psi) ± upA ± d = 831.114 kips Vr_p_ii _ (>�A ± d / upA + 2) ± I ± (f'r ± 1 psi) ± upA ± d = 1417.385 kips W_p_iii = 4 ± ,± (f'r ± 1 psi) ± upA ± d = 554.076 kips Vr_p = min(Vr_p_i, Vc_p_ii, Vr_p_iii) = 554.076 kips PASS - Nominal shear strength is less than concrete shear strength 7 No. 5 bars btm (11" c/c) 7 No. 5 bars top (11" c/c) 6 No. 5 bars btm (8" c/c), 6 No. 6 bars top (8" c/c) ---- One way shear at d from column face — - — Two way shear at d / 2 from column face WC-102 www.hilti.us Profis Anchor 2.7.2 Company: Page: 1 Specifier: Project: Address: Sub -Project I Pos. No.: Phone I Fax: Date: 4/12/2017 E-Mail: Specifier's comments: 1 Input data Anchor type and diameter: Hex Head ASTM F 1554 GR. 36 1 1/4 I I Effective embedment depth: hef = 20.000 in. Material: ASTM F 1554 Proof: Design method ACI 318-11 / CIP Stand-off installation: eb = 0.000 in. (no stand-off); t = 1.000 in. Anchor plate: Ix x ly x t = 28.000 in. x 14.000 in. x 1.000 in.; (Recommended plate thickness: not calculated Profile: Round HSS, Steel pipe (AISC); (L x W x T) = 8.630 in. x 8.630 in. x 0.500 in. Base material: cracked concrete, 4000, fc' = 4000 psi; h = 30.000 in. Reinforcement: tension: condition B, shear: condition B; edge reinforcement: none or < No. 4 bar Seismic loads (cat. C, D, E, or F) Tension load: yes (D.3.3.4.3 (c)) Shear load: yes (D.3.3.5.3 (b)) Geometry [in.] & Loading [kip, ft.kip] z Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan WC-103 EMMI= www.hilti.us Profis Anchor 2.7.2 Company: Page: 2 Specifier: Project: Address: Sub -Project I Pos. No.: Phone I Fax: Date: 4/12/2017 E-Mail: 2 Load case/Resulting anchor forces ., Load case: Design loads Anchor reactions [kip] Tension force: (+Tension, -Compression) Anchor Tension force Shear force Shear force x Shear force y 1 8.157 0.000 0.000 0.000 2 0.000 0.000 0.000 0.000 3 8.157 0.000 0.000 0.000 4 0.000 0.000 0.000 0.000 max. concrete compressive strain: 0.09 F%e] max. concrete compressive stress: 402 [psi] resulting tension force in (x/y)=(-10.000/0.000): 16.313 [kip] resulting compression force in (x/y)=(12.068/0.000): 16.313 [kip] 3 Tension load Load Nua [kip] Capacity + No [kip] Utilization ON = Nua/+ N„ Status Steel Strength* 8.157 42.151 20 OK Pullout Strength* 8.157 Concrete Breakout Strength** 16.313 Concrete Side -Face Blowout, direction ** N/A * anchor having the highest loading **anchor group (anchors in tension) 3.1 Steel Strength Nsa = Ase,N futa ACI 318-11 Eq. (D-2) � Nsa ? Nua ACI 318-11 Table D.4.1.1 Variables Ase,N [in .2] futa [psi] 0.97 58000 Calculations Nsa [kip! 56.202 Results Nsa [kip] steel Nsa [kip] Nua [kip] 56.202 0.750 42.151 8.157 3.2 Pullout Strength NpN = W c,p Np AANp = 8 Abrg fc y NpN > Nua ACI 318-11 Eq. (D-13) ACI 318-11 Eq. (D-14) ACI 318-11 Table D.4.1.1 Variables 1 W c;p Alb, [in. a a fc [psi] 1.000 1.82 1.000 4000 30.526 27 OK 36.945 45 OK N/A N/A N/A Calculations Np [kip] 58.144 Results Npn [kip] concrete seismic nonductile No, [kip] Nua [kip] 58.144 0.700 0.750 1.000 30.526 8.157 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan WC-104 EMMI= www.hilti.us Profis Anchor 2.7.2 Company: Page: 3 Specifier: Project: Address: Sub -Project I Pos. No.: Phone I Fax: Date: 4/12/2017 E-Mail: 3.3 Concrete Breakout Strength Ncbg = ANc A �N g/ W ec,N W ed,N W c,N W cp,N Nb ACI 318-11 Eq. (D-4) Ncbg >_ Nua ACI 318-11 Table D.4.1.1 ANC see ACI 318-11, Part D.5.2.1, Fig. RD.5.2.1(b) ANco = 9 hef ACI 318-11 Eq. (D-5) 1 2 eN < 1.0 W ec,N ( = ACI 318-11 Eq. (D-8) 1 + hef 3 W ed,N = 0.7 + 0.3 ( Ca,min / c 1.0 \1.5hef/ ACI 318-11 Eq. (D-10) W cp N = MAX�ca,min 1.5hefc 1.0 ) ACI 318-11 Eq. (D-12) cac Cac Nb = 16 a e hef3 ACI 318-11 Eq. (D-7) Variables 1 7 hef [In.] ec1,N [In.] 1 ec2,N [In.] Capin [In.] W c,N 12.6670.000 0.000 14.000 1.000 ca. [In.] kc ?,_a fc [pSiJ1 - 16 1.000 4000 Calculations! AN, [in•2] ANco [in•2] W ec1,N W ec2,N W ed,N W cp,N Nb [kip] -------------- 1584.00 1444.00 1.000 1.000 0.921 1.000 69.650 Results Ncbg [kip] concrete seismic nonductile Ncbg [kip] Nua [kip] 70.371 0.700 0.750 1.000 36.945 16.313 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan WC-105 www.hilti.us Profis Anchor 2.7.2 Company: Page: 4 Specifier: Project: Address: Sub -Project I Pos. No.: Phone I Fax: Date: 4/12/2017 E-Mail: 4 Shear load Load Vua [kip] Capacity � V„ [kip] Utilization pv = Vua/+ V„ Status Steel Strength N/A N/A N/A N/A Steel failure (with lever arm)* N/A N/A N/A N/A Pryout Strength* N/A N/A N/A N/A Concrete edge failure in direction ** N/A N/A N/A N/A * anchor having the highest loading **anchor group (relevant anchors) 5 Warnings • The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This means load re -distribution on the anchors due to elastic deformations of the anchor plate are not considered - the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementary reinforcement is used. The (0 factor is increased for non -steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-11 Appendix D, Part D.3.3.4.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Part D.3.3.4.3 (b), Part D.3.3.4.3 (c), or Part D.3.3.4.3 (d). The connection design (shear) shall satisfy the provisions of Part D.3.3.5.3 (a), Part D.3.3.5.3 (b), or Part D.3.3.5.3 (c). • Part D.3.3.4.3 (b) / part D.3.3.5.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Part D.3.3.4.3 (c) / part D.3.3.5.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non -yielding attachment. Part D.3.3.4.3 (d) / part D.3.3.5.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by (0o. Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan WC-106 www.hiiti.us Profis Anchor 2.7.2 Company: Page: 5 Specifier: Project: Address: Sub -Project I Pos. No.: Phone I Fax: Date: 4/12/2017 E-Mail: ----------------------------------- 6 Installation data Anchor plate, steel: - Profile: Round HSS, Steel pipe (AISC); 8.630 x 8.630 x 0.500 in. Hole diameter in the fixture: df = 1.313 in. Plate thickness (input): 1.000 in. Recommended plate thickness: not calculated Drilling method: - Cleaning: No cleaning of the drilled hole is required Coordinates Anchor in. Anchor x y c-X c�X c_Y c,Y 1 -10.000 -5.000 14.000 58.000 19.000 29.000 2 10.000 -5.000 34.000 38.000 19.000 29.000 3 -10.000 5.000 14.000 58.000 29.000 19.000 4 10.000 5.000 34.000 38,000 29.000 19.000 Anchor type and diameter: Hex Head ASTM F 1554 GR. 36 1 1/4 Installation torque: - Hole diameter in the base material: - in. Hole depth in the base material: 20.000 in. Minimum thickness of the base material: 21.344 in. Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan WC-1 07 ... ERLUNDEEN `„Tr"e,1..sC T URAL.. Cl o SC. ;�, 11.;; :i ,I ,: t: t. t�.%7 s:= DESIGNCOVERED PLAY 8,01 SECOND AVENUE, SUHTE 900 SEATTLE, VIVA 9810,1 / F, c;r i343,04!60 ; ;..dt,.c,com ... ERLUNDEEN `„Tr"e,UC T URAL.. Cl o SC. ;�, 11.;; :i ,I ,: t: t. t�.%7 s:= DESIGNCOVERED PLAY LOADING CP-1%,' ; f COVERED PLAY BEAM TRIBUTARY AREAS COUGHLIN PORTER I STRUCTURAL CIVIL E NDEESEISMIC ENGINEERINN G See Attached Spreadsheet for Covered Play Loadings R1 TI IB. = 10,083' b; 3i E - 10 r ' OU166ER5 PER t ! . __ ..' EDGE 4 PER DETAILS - MITER AND BUTT WELD , ,1s L• „y+' TOGETHER AT GORNER5,<n 1.4 TO 5TEEEL q1 cb ti 'hp, �'� TO STEEL 3N20 6A. METAL ROOF DEOKPER 16/5-502TP. H5512Y,4yL,—mm ^.;�1(s'' t't I seod- 3 SIN, 5&L'm _O. STEEL ttt{jt��itr 1 t%)1�i�t tt f 1 — EL. 4=.,-3. - 61 610.. JJ 11{its elm 14 tt 1 r (t117 j ,� cba T,o_SrEEL L<� tl1 4 s1{: .. a t 1Gr 11 alo 1.5 ft.=4613 41 F x 8 ;�gj qq �p ^qqy yy ,q �y -610 TIR B. = '10,542` T. STEEL =465'-4' 3 "^'* T0. 5TEEL -5_ 4. EL=461'-3' R7 TRIB. _ &95 ' (0 .PER 1 1 6/ -610 ,TYP. AT J R8 RAGE GONK5 TRIB. = 10.375` J R3 P RIB, _ "1CW83' a W W Z J o' w F a' O d Z J O u 0 N L T 0 0 V00 Madrona K-8 Designed By: KCL Date: 04/ 14/2017 Project No: Client: Checked 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343.0460 / cplinc.com Sheet: Covered Play Loading Gravity DL = 18 psf SL = 28 psf Member Trib Width (ft) DL (plf) SL (plf) R1 10.083 181 282 R2 10.375 187 291 R3 8.958 161 251 R4 10.542 190 295 IRS 12.333 222 345 R6 10.542 190 295 R7 8.958 161 251 R8 10.375 187 291 R9 10.083 181 282 Member Trib Width (ft) DL (plf) SL (plf) H1 3.750 68 105 H2 4.292 77 120 Lateral Area = 3126 sf w = 18 psf W = 56 kips Site Class = C SS = 1.262 S1 = 0.493 SDS= 0.841 SD1= 0.43 Conservatively, earthquake forces are determined using Chapter 13 of ASCE 7-10. Other Flexible Components - High Deformability (Table 13.5-1) Rp = 3.5 ap = 2.5 Table 13.5-1 1 = 1.25 (Conservative, Importance Factor not required per 13.1.3) ASCE 7-10 13.3 -- Fp = Factor*Wp Factor = (0.4aPSDS*(1+2z/h))/(Rp/Ip) z = 0 ft h = 16.75 ft Factor= 0.30 Factor min = 0.32 Factor max = 1.68 Governing = 0.32 Conservatively increase "factor" to 0.5. For comparison, this is similar to a building structure design with a response modification factor "R" of approximately 2. Factor= 0.50 Base shear = 28.1 kip Apply seismic load to the structural model at the ends of the ridges (4) locations between columns. Shear = 7.0 kip C P-3 COVEREDIC Company Designer Job Number Model Name CPL JAW Madrona K-8 Covered Play Apr 14, 2017 3:23 PM Checked By. Hot Rolled Steel Properties I qhPd F Ikqil C, rk--,il Nil I Thi-.rm MF r)p.n-,itx/rk/ft Yip-ldrk--,il R%/ Rifkcil Rt Hot Rolled Steel Section Sets MINEURM ONE= Tube A500 Gr.B Rect I Typical 7.1 �1�0 �� .......... Joint Coordinates and Temperatures I q hel X fftl Y ffti 7 rftl Temn IR Detach From Di--- 4&9167 N 13 22.4167 ------------ ------ N23 5.809635 03 - ------------------ wffi*�� RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 1 CP-14 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Apr 14, 2017 3:23 PM Checked By.__ Joint Coordinates and Temperatures (Continued) I ahal X rftl Y I fl 7 rftl Tamn rF1 natnnh Frnm ni 55.79185 Joint Boundary Conditions Inint I ahal X rk/inl Y rk/inl 7 rk/inl X Rnt rk-ft/rarll Y Rnt rk-ft/rartl 7 Rnt rk-ft/rarll i • ,a. • a •.. OR*.. Joint Loads and Enforced Displacements (BLC 3 : EQ (X�) .Inint I ahal I n M niractinn Mnnnihirtaf(k k-ft) (in md) (k*c^g/f s • Joint Loads and Enforced Displacements (BLC 4 : EQ (l)) .Inint 1 ahal 1 r) M nirartinn Mannifiular(k k-ft) (in rarl) (k*s^g/f_ i Member Distributed Loads (BLC 1: Dead) Member Label Direction Start Magnitude ffM'i End ITIagnitude(SM Start Location OWN r r • • • RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 2 CP-15 Company CPL Designer JAW 111RISA) Job Number Madrona K-8 Model Name Covered Play Apr 14, 2017 3:23 PM Checked By__ Member Distributed Loads (BL C 1 : Dead) (Continued) Mpmhk--r I nl nirpnfinn Start Mnrinihiril F1 Fnri MAnnitiopl F1 qt;;rt I nr.;;tir)nfft OU Find I nr.;;finnrft om Member Distributed Loads (BL C 2: Snow) KApmhpr I qhpl nirprtinn Rtnrt KAnnnihiripl R F:nri KAninnitiOpIl R qtqrt I nnntinnfft O/M l I nrntinnlft O/M jjjjjjjjjjjASj1��1lIl11l!Ji Ill 1111,1111 ill Basic Load Cases F31 C Dpscrintinn (;atponry X Gravity Y Gravity 7 Gravity Joint Point Di-trihtjtp(i Arpq(Mp I;tjrfa(-P(P Load Combinations r)p-- crintion Solvp PI ';Rq.';R I C F;;r, RI C Fqr R1 C F;;r. Rl C Fqr I I C Fi Rl C FRr, Rl C Fqr RI C F;;r Rl C F;;r I C Fqr mom== EMMM IMMUNKLOINE-3; - S RISA-3D Version 15.0.1 [PA..A..AENG\SteeI\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 3 CP-16 Company CPL Designer JAW 111RISA) Job Number Madrona K-8 Model Name Covered Play Apr 14, 2017 3:23 PM Checked By__ Load Combinations (Continued) n,-.-, crintinn onivPPn,--it;,. R. . R1 CFac R1 (Far. R1 r.FAr. R1 r.Fqr. R1 rFnr. R1 (Far. R1 r.Fqr. R1 rFnr. R1 r.Fqr. R1 (Fqr. Joint Reactions I r. .mint I Pht-d Y rkl Y 1k1 7 rkl RAY fk-ftl MY rk-ftl KA7 Ik-ftl --------- — --- — ---------- ---------- IN; -------- - ------- IMAM= RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 4 CP-1 7 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Joint Reactions (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Joint Label X [kl Y [kl Z [k] MX [k-ftl MY [k-ftl MZ [k-ftl logo= I ME 159 1 W. ME 1111111111111611111 �=In .0 mom Im 0 on; IBM so w 16 Totals� MENEM, --- -------------- -- go 0—• OEM= — -------- — --------- Joint Deflections LC Joint Label 7, Yd ------------- RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 6 CP-19 Company CPL Designer JAW 111RISA) Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- .. .. .. .. .. .. .. .. .. .. .. !F1111 NUNN= MOM MNNMU ----- EMM-- ma� MENNSM MME E-MMES, ��EEONE 1 Emm --- MEIMMM RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 19 CP-32 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torque[k-ftl V-V Moment[k-..z-z Morl ------------ will Em Im M I= RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 20 CP-33 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- z MEMENEW3.42-M • 3.902 -1145 RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 21 CP-34 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torque[k-ftl V-V Moment[k-..z-z Morl 7.45 1.807 EMM EIIIIIIIIIIIIII EIH� ����ENMMEEM= EROE«:. ■ !' EINE INSMOM RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 22 CP-35 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- OEM= no nu• ;going&= mm -.975 1 -4812 — ONNOURNOOM11110-� RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 23 CP-36 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- 14.092 1 W5 NMI! 17.199 5.739 RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 24 CP-37 Company CPL Designer JAW 111RISA) Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- ME IM mm WE Em mmf RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 26 CP-39 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torque[k-ftl V-V Moment[k-..z-z Moment[k- mum IM MWENERM OEM= - - - -------- Imm M M Em M } «#=��EEINE M MIMMEEM M RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 27 CP-40 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- WINNOW 11''111111,11'rl 11,1-1:1 a ------------------ is f RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 28 CP-41 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- MOR - - - - ----------------- ENO= RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 29 CP-42 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- -- — ------------ EMERIS OEM RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 30 CP-43 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- 31M MMEMENEEKOHMEEKSM M SEEMORMEMEM FIRM 9110 MEMO ErM. M C 10 0 0 0 0 kv&m EEIZZEI� [1 • L-TOIJ11MI RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 31 CP-44 Company CPL Designer JAW 111RISA) Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- EEEMV� I • on SHOM • — - — - — ------------ t EONE • RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 32 CP-45 Company CPL Designer JAW 111RISA) Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- �, RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 33 CP-46 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- !1101 MEAN= RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 34 CP-47 Company CPL Designer JAW 111RISA) Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- ------------------ 14.155 4.777 RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 35 CP-48 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- --------------- mom= ��EEINE MGM En- MOSM 21.295 7.162 EMMOMMM RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 36 CP-49 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- EIRE --- MENEM=- 20.875 -2.818 OEM= R.- In MEMO EE�Emmm on RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 37 CP-50 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- ---------------- MEN RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 38 CP-51 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- MEMO= — ----- ME RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 39 CP-52 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- SEINES kzY.�� III IN SENSE I ��-ESIIEII IS MINE !#, MENOMINEE 13.721 4.817 RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 41 CP-54 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- ;'I il gjllj�: 1 I WANIONNEUMIN M. 11 RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 42 CP-55 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- SEENEENEEM i ------------------ , RIM E&INEffm EM IIIIIIIIIIIIIIIIIIIIIIIII Ing IISIMI MI. 111101111111111i -------------------- 9.605 -1 It RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 45 CP-58 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- wow= ��IMNNWAIIIIIIIIERWX-= I MOM= MIMIM111 mff� EM=-- OM0 it it NEWASANIEWERIC'm i NMG= EM EM NO E--- EM RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 46 CP-59 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- 13.037 3.535 EM ON M EEIEEI =EEIEIEEIEEIE EEIEEI EM ENRIEN IMININEE MM IMIENMIN NEE MININEE wmmffl• LINE INNEEN EINERim EIEMEEIEI� MENEM Em -1.429 1 11.655 MAINE INEEN IIMIIIE ----------------- NON E�EEEEIEEI EEIEEI E20 RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 47 CP-60 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- MEN= • ON= EINE • RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 48 CP-61 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- !111, a OEM# ti k 0- 0- RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 49 CP-62 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- ------------------ NM ME U l= ----- -MEM lnlln�� Wffi� 3.509 -8.299 0 0 0 M 019 0 ME EL. see Elms= ------------------ ELEMESSAL, USE RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 50 CP-63 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- .. .. .. .. .. .. .. .. .. .. .. 18.502 -2.752 14.752 3.387 Mill 0 k rd 01. 6 MASIM RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 52 CP-65 Company CPL Designer JAW 111RISA) Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torque[k-ftl V-V Moment[k-..z-z Moment[k- ------- ------------- • 2.926 -1.607 MM IM IMM MEM 13=001EEIIIIIIM NORM IMMMIA 00=� •.• IM RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 53 CP-66 Company CPL Designer JAW 111RISA) Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- EONE Im «• L .1 a �Af Im MMU.- H-M -------------------- WE OREOMMEJ1111M RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 54 CP-67 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- MIND$ M 0M SEMI, I HENSON "I OEM= OREM Nomm • monNE-E-��$ SON ME MM Im • RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 56 CP-69 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- am am Sm • Sm ------------------ Sm ME EM • • M am MM fflm��� RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 60 CP-73 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- =001♦ Om am fflo-- MEEMENESISO WRIM"AMEM10 ------- --- ---- -- mmff« RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 61 CP-74 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- MEMO= Im M Em Im Emu=i 1 M= Im Im ----------------- i aasINE Im Im KIM RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 62 CP-75 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- .. .. .. .. .. .. .. .. .. -1.556 -12.999 OEM= EM-1 I ;EEO= 0 WIN Im mm ��MM MI,EEINE ME EMNIMM= mom - -- - ------- EM MMENIM -3 R EEM RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 63 CP-76 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- .. .. .. .. .. .. .. .. .. .. .. .. 0 ji. MEENIAME -MM-MOMEEINE RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 64 CP-77 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- i !I Is 1; 1 OEM EM MM ------------------- Em ----------------- RM • ffm�� MM EM 025.126 9.971 — ------ OEM RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 65 CP-78 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- EM =1 ME UNNEREM mnmmmzm� ----- O-En NMNMU ----- ENESERIMUM EM =EERM ovum MM IBM= RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 67 CP-80 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- ME ------------------- --------------------- M - -- ------------------- -- ----------- RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 68 CP-81 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- OEM= RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 69 CP-82 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- --------------- - -------- SIM ... jr, 11�,:i 110111! i Em —0000000L U1, LOAM RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 71 CP-84 Company CPL Designer JAW 111RISA) Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torque[k-ftl V-V Moment[k-..z-z Moment[k- NEEMW� I • EM111 M M-M IN RMIM MEMNEONE MM won; M L OEM= EEUS!l IM • MEN ------------------ �M= EONE RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 72 CP-85 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- Mm•• EEMEPJ U-0-RUM 0111=1 MEMO RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 73 CP-86 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- 09MOOMMUSISM b, 0 EM mmllm ----------------- MM mm ��NMNKM� MM ME MM • MI Mom- MMIMEEINE ------------------ EM RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 75 CP-88 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- 8.324 3.517 OEM= EMMOM i♦ is i mnmmmffl« IBM ------- RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 77 CP-90 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- ME Z., US IN me 11.669 -5.385 ff. WIMEMMM !MEN= MIS MEMO! Mae= NOMM mmm A UNNEMO I MMM RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 78 CP-91 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torquefk-ft] V-V Moment[k-..z-z Moment[k- MORMON MOSINEE MN MORISON MIMMIMMM MOSINEE �-�MMEMMM MOSINEE MOSINEE MOSINEE IMMIM MOSINEE IMEMBE IIIIIIIIIIIIIIIIIIIIS. MMOMME MMEMEM MOSINEE MOSINEE ------ IMMMEMIM MOSINEE M M M IMM IMOM IMME IMME I NZIMM1 N--- MOSINEE MOSINEE • MUMMEM. MINI-SUMMMMOMM IMMIUMMI IMMIMMMM M No N N �Nm If= see ud-241M MOM MOSINEE � M MM MBMIIM' MORMON RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 79 CP-92 Company CPL Designer JAW IIIRISA Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torque[k-ftl V-V Moment[k-..z-z Moment[k- Eiiiii ffmmmmmm��f �MEEMM 0 Fly, FTI- M. # #= Ill: ------ ----------- IMMININIEN �EE�Efflffmllff M�IMMM VAH-�# #WMM ELSEEEMQ log= EELIM���=R= Om OEM= Im ISM ME RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 80 CP-93 Company CPL Designer JAW 111RISA) Job Number Madrona K-8 Model Name Covered Play Member Section Forces (Continued) Apr 14, 2017 3:23 PM Checked By__ LC Member Label Sec A)dal[k] v Shear[k] z Shear[k] Torque[k-ftl V-V Moment[k-..z-z Moment[k- -------------- ISO MEMMM.-MMIM M: t IM BE - - ------ MMMEM EM IM WE �,o---,EEMM• ME NO3,, NNW= 11INIGIM ISM NOMMEEIM IM RISA-31D Version 15.0.1 [P:\...\...\ENG\Steel\Covered Play\Covered Play 03-10-17 - JAW.r3d] Page 81 CP-94 80 �-do 96 abed IPCJ'AAVr - L4-M-00 Aeld PGJGAOO\Aeld PE)J9A0o\j@9jSVDN3\---V--\:dl V0'9 6 UOISJE)A GC-VSI?J NEW mm MM=BM Imam U-mr-534 mzo�ffiaw4mml"# ff."T. mo WIFIT MIZMEH ub3 qo ... un.!qd ... UN�!qd [�Jjud�!qd J�Ioud.!qd JI(] Filoo-1 ... jeaqs filloo-1 xen on adeqS jaqwan 0-1 (penqquoo) s-payo apoo leejS (7_4217:(ok-o9C)qjpk OSIVieqweMl field P9JOA00 GweN WON N. (Sill I :49 paraqo 9->j euojpeN jE)qwnN qor Nd CZ:C my r Ja U61 S,9(] ,LLoZ'tq AV Ido Auedwoo ... ERLUNDEEN `„Tr"e,UC T URAL.. Cl o SC. ;�, 11.;; ENGINEFRING. DESIGNCOVERED PLAY CONNECTION AND FOOTING DESIGN 801 SECOND OND A+{ENs.t(: SURE 900 SEATTLi., DNA 98 E()4...../ P 200. v3 #g460 0 { phnC:,ca Yii CP-109 COUGHLINPORTERLUNDEEN COVERED PLAY CONNECTION DESIGN STRUCTURAL CIVIL SEISMIC ENGINEERING k (Ai: q BRACE Y- 1-4 & CAL. PER PLAN I 20. 1 I m V4 BRACE PER PLAN V4 a rp6HER KERF a Y17 tp YCEDED TO BASE E.YV alp" FILLET EA. SIDE 14 f-'A EASE M ITX14'S)ARE A/ (4)1'4) F1554 6R36 ytp. -Y,"NON-SHRNK 6ROVT THREADED RODS o Voc, #3 HOOPS 0 6106 EA, MY IN V&- HOLES (EMBED 24") d = 447-3" CNANFER %' FN15H (7RADE/FAVIN(7 PER LAN05CAPE ;v (10#5 Xr&5 W STD. HOOK EXALLY SPACED AROUND el, per Plan PILASTER PERIMETER DaBLEW Fr(5.sREINFFrR T71I PLAN CTRD. ON COL. 15'r 0 v", w N V\, 74 11c" t i—k le Project: t r Designed By: A, W Date: 4, Proiect No. Client: Checked Bv: Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343:0460 / cp1inc.cGP-1 10 STRU'CTURAL CIVIL SEISMIC ENGINEERING ect: I Nf 1 Y' 7� Designed By' � t Date kt ect No. Client: Checked By_ Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343.0460 / cplinc.cop-111 � Project No Client: CheckedBy: Sheet of 801 asoowo Avewue, auns 900 aeArTLe' WA 98104 / p 206.3*3.04e0 / upxnn.oGP-112 Project: MADRONA Project#:S13-0282-01 By: JAW COUGHLINPORTERLL 13 Ph Street, Suite 300, Seattle P: 20 6,343.0 460 Subject: Column Base PL Design Date: 4 14 17 www.c.c343.5691 wplinc.mm FILL IN ALL YELLOW References: Column Marks: CELLS AISC 360-05 ACl 318-08 F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F F + t. t t - t. t t ,t,t. ,t. P": 51 kips Conc. Pedestal Length: 36 in Conc. Length Used: 28 in Conc. Pedestal Width: 36 _._ in Conc. Width Used: 28 in A2: 784.0 in f ": 4 ksi Column Section: P6.0 W?x?,HSS?X?,P? (see comment) Column d: 6.63 in Column bf: 6.63 in Clearance on Sides: 3_. in Base Plate f,: 36 ksi A,: 0.7 in Solve forA f; N,Pp= Oc(0.85f'cAt)(A 21A 1) 12 A,: 11.5 in Solve forA1; O.Pp_=4P,(1.7f,A1) Column Area: 43.9 in Controlling A,: 43.9 in r�" ..t{ 444ttttt444ttttt444ttttt444ttttt444ttttt444ttttj t; Sl;yi #',�' t. ,. t ,t tit :t fttt 7t Xt:;l s£�t}; ttt.{tt{tt{tt:cit.{tt{tt{tt:cit.{tt{tt{tt:cit.{tt{tt{tt:cit.{tt{tt {tt:cit.{t!(t \i�:{v,,. delta: 0.00 in Suggested N: 12.63 in USE N= 14 in Suggested B: 12.63 in USE B= 14in {,.,,,'d. ,,' J .r t�t3°t t£•, ,} i} -.i i i emzi. i i emi i}-.,i-e i i emzi. i i emi i .,,i-e i i emzi. i iA��rr Min PL Dim's Full PL Dim's for Bearing N used for Bearing: 12.63 14.00 in B used for Bearing: 12.63 14.00 in Ultimate Stress Capacity, .-,cpc 4.42 4.42 ksi Ref AISC Egn J8-2 Applied Stress, fp: 0.32 0.26 ksi =P /(BN) -,CPp 704.5 866.3 kips Ref AISCEgnJ8-2 m: 3.17 3.85 in=(N-0.95d)/2 n: 3.17 3.85 in=(B-0.8bf)/2 X: 0.07 0.06=(4dbf/(d+bf)21(P /4>PP) . 0.27 0.25=2x12/j1+(1-x) 112151 n': 1.66 1.66 in=(dbf)12/4 0.45 0.41 in Controlling L: 3.17 3.85 in ! ,�ree t t tt tt tt tt tt tt .e t t .,tt „tt .tt „tt .tt „tt .,tt „tt .tt „tt .tt „tt .,tt „tt .tt „tt .tt „tt .,tt „ tmin: 0.445 0.488 in =L(2P /0.9F,BNI" USE t--;,yin y£ w Bolt Diameter: 1 in Hole Diameter: 1 13/16 in Washer Thickness: 3/8 in Washer Width: 3 in Washer + Bolt Offset Tolerance: 3.81 in Bolt Coordinates: X Y_ Bolt 1 2 2 Bolt 2 12 2 Bolt 3 2 12 Bolt 4 12 12 Page 1 4/'1 Ri141:a PM , i u � R c ari € s,q- ys, 1* .sf o T r...5 s or t E ,+.u?.,d„pt�" i 4e � Project'°y`kF ` Designed By Date: Project No. Client: Checked By_ Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343,0460 / cplinc.c&P_114 ,!C'43 Ff N BEAM PER FLAM1 v r"', SLOPE VARIES v- 71v a.J 45� V' c" v KERF e BRACE PER PLAN BRACE A -f' � Lo 00 ash w y' 'o ts 'to project; _:t Designed B y, J Date: -I-A 14 P ect No. Client: Checked By: Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 / P 206.343.0460 / cplinc.1- c-p- 115 *115 RS.,,,° tea. 1 ■ 6 A (4)1'6 03,06 STOP OF '".�...�. H55. w M' ` 5EGTION 1 GAP iE %' --- 5EGTION 2 BENT RIDGE I PER 2915-610- FIELD IN5TALL A5 REOD. FOR WELD ACa-65 R: PEE E. VX11"XP-4" ALI6N M TOP OF BEAM AND SKEW VERTICALLY TO AL16N W! INCOMING BEAM AL16NMENT .{ IV TOF OF " (. 4^„✓ N55 PLAN i.. , w i Projeet: $ t Designed By: j Date: /I i � — — Proiect No. Client: Checked Bv: Sheet of 801 SECOND AVENUE, SUITE 900 SEATTLE, WA 98104 > P 206.34M460 1 oplinc.cI&P-116