APPROVED BLD Calcs+7.21.2020_12.22.07_PMSOUND STRUCTURAL SOLUTIONS
E N G I N E E R 5
Jonathan Castillo
Jonathan Castillo
Client
206-949-1925 phone
fax
SSS #
Project
Identification
s2004017
7216 Soundview Dr
Garage Addition & ADU
Katelier
Section Engineering Calculations
1 Design Criteria
2 Wind & Earthquake Design
3 Framing Analysis
4 Foundation Design
5 Detail Calculations
WAC 196-23-070
24113 56th Ave W - Mountlake Terrace, WA 98043 - Ph: 425-778-1023 - Fax: 206-260-7490
SSSOUND STRUCTURAL SOLUTIONS
E N G I N E E R S
DESIGN CRITERIA
6628 212th Street SW, Suite 205 - Lynnwood, WA 98036 - Ph: 425-778-1023 - Fax: 206-260-7490
DESIGN CRITERIA
Governing Code 15 IBC Risk Category II
Wind Design Data
Basic Wind Speed (3 sec gust) mph
110
Surface Roughness
B
Wind Exposure Category
B
Earthquake Design Data
Seismic Importance Factor, Ie
1.00
Site Classification
D
Short Period Acceleration, SS
1.302
1-Second Acceleration, S1
0.511
Seismic Desi n CategoryD
Spectral Response Coefficient, Sps
0.868
Spectral Response Coefficient, SDI
0.511
Gravity Load Data
Roofs: loads are psf
Dead Live Snow
Trusses (pitched)
*Pitches <_ 8:12
Top Chord 10 0 20
Bottom Chord 5 0 0
Soil Data
Allowable Soil Bearing 2000 sf
Internal Pressure Coefficient +/-
0.18
Topographic Factor, KZt
1.00
Wind Importance Factor, I
1.00
Seismic Force Resisting System
ITable 12.2-1: A-15
2010 Equiv. Lateral Force Procedure
Response Modification Factor, R
6.5
6.5
Transverse
Longitudinal
Seismic Response Coefficient, CS
0.134
0.134
Transverse
Longitudinal
Seismic Base Shear, V
1643
Ibs
ASCE
AMERICAN SOCIETY OF CIVIL ENGINEERS
Address:
No Address at This
Location
Wind
ASCE 7 Hazards Report
Standard: ASCE/SEI 7-10 Elevation: 406.14 ft (NAVD 88)
Risk Category: II Latitude: 47.837953
Soil Class: D - Stiff Soil Longitude:-122.330613
�� '� E•;crest' �.
Et-
. .,li R7111 Ci�6 _
L 1m Gnus
[y� •.. l--emu.•.=� `y ry+
;G,
1.r1^=11
F•�nc� Caul
I
Results:
Wind Speed:
110 Vmph
10-year MRI
72 Vmph
25-year MRI
79 Vmph
50-year MRI
85 Vmph
100-year MRI
91 Vmph
Data Source:
ASCE/SEI 7-10, Fig. 26.5-1A and Figs. CC-1—CC-4, incorporating errata of
March 12, 2014
Date Accessed:
Fri May 29 2020
Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear
interpolation between contours.
Wind speeds are interpolated in accordance with the 7-10 Standard. Wind speeds
correspond to approximately
a 7% probability of exceedance in 50 years (annual exceedance probability =
0.00143, MRI = 700 years).
Site is not in a hurricane -prone region as defined in ASCE/SEI 7-10 Section 26.2.
Mountainous terrain, gorges,
ocean promontories, and special wind regions should be examined for unusual wind
conditions.
https://asce7hazardtool.online/ Page 1 of 3 Fri May 29 2020
-ASCE®
AMERICAN SOCIUY OF CIVIL ENGINEERS
Seismic
Site Soil Class:
D - Stiff Soil
Results:
Ss :
1.302
Sos
0.868
S,
0.511
Soy
0.511
Fa
1
TL
6
Fv
1.5
PGA:
0.534
SMs
1.302
PGA M :
0.534
SM,
0.766
FPCA
1
le :
1
Seismic Design Category D
14 MCER Response Spectrum 09 Design Response Spectrum
1-2 0_3 •
MMS
0.7 i
1 0 * 0.6 i
($ 0.5
0-B 0-4
04 0.3
0.2
0-2 0.1
�r
fl 0
0 - 6 7 0 - -
Sa (g) vs T(s) Sa (g) vs T(s)
Data Accessed: Fri May 29 2020
Date Source: USGS Seismic Design Maps based on ASCE/SEI 7-10, incorporating
Supplement 1 and errata of March 31, 2013, and ASCE/SEI 7-10 Table 1.5-2.
Additional data for site -specific ground motion procedures in accordance with
ASCE/SEI 7-10 Ch. 21 are available from USGS.
https://asce7hazardtool.online/ Page 2 of 3 Fri May 29 2020
-ASCE®
AMERICAN SOCIETY OF CIVIL ENGINEERS
Snow
Results:
2
Ground Snow Load, p9: 20 Ib/ft
Elevation: 406.1 ft
Data Source: ASCE/SEI 7-10, Fig. 7-1.
Date Accessed: Fri May 29 2020
Values provided are ground snow loads. In areas designated "case study
required," extreme local variations in ground snow loads preclude mapping at
this scale. Site -specific case studies are required to establish ground snow
loads at elevations not covered.
The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of
any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers;
or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from
reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability,
currency, or quality of any data provided herein. Any third -party links provided by this Tool should not be construed as an endorsement,
affiliation, relationship, or sponsorship of such third -party content by or from ASCE.
ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent
professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such
professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.
In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors,
employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential
damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by
law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data
provided by the ASCE 7 Hazard Tool.
https://asce7hazardtool.online/ Page 3 of 3 Fri May 29 2020
Topographic Effects
Distances below are measured from the base.
Crest
elev: 456
dist: 6600
Site
elev: 402
dist: 4012.8
H/2
elev: 233.5
dist: 2640
Base
elev: 11
dist: 0
t)Pw^/ 3
44
Exposure Category B
Height above local ground z= 16 ft
Location Relative to Crest Upwind
Hill Shape 2-D Esc
Height of Hill H= 445 ft
iDGW�wrEv,7
H ` ;20-L5 SL
�20 }P,IOC—E
30c► .ym
Distance upwind of the crest to where the
Lh= 3960 ft difference in ground elevation is half of the height
of the hill.
x= 2587.2 ft Distance upwind (or downwind) from the crest to
Wind Speed-up over Hills, Ridges, and Escarpments
1) The hill, ridge, or escarpment is isolated and unobstructed upwind by
other similar topographic features of comparable height for 100 times the
height of the topographic feature or 2 mi., whichever is less. This
distance shall be measured horizontally from the point at which the
height H of the hill, ridge, or escarpment is determined.
2) The hill, ridge, or escarpment protrudes above the height of upwind
terrain features within a 2-mi radius in any quadrant by a factor of two or
3) The structure is located as shown in Fig. 6-4 in the upper one-half of a
hill or ridge or near the crest of an escarpment.
4) H/Lh > = 0.2
5) H is greater than or equal to 15 ft for Exposure C and D and 60 ft for
Exposure B
Topographic factor
If site conditions and locations of structures do not meet all the
conditions specified in Section 26.8.1 then KA = 1.0.
Otherwise:
Kzt= 1.10 K1= 0.08
K2= 0.56
K3= 0.99
Case Studies in Kzt Determination
Controlled 2-mi True
by:
2-mi True
True
H/Lh >= 0.11
False
H = 445
True
Kzt=
1.00
SSSOUND STRUCTURAL SOLUTIONS
E N G I N E E R S
LATERAL ANALYSIS
6628 212th Street SW, Suite 205 - Lynnwood, WA 98036 - Ph: 425-778-1023 - Fax: 206-260-7490
Lateral Analysis
s2004017
Number of Diaphragms
Code
General Design Criteria
1
15 IBC 2015 International Building code & 2010 ASCE7
Design Loads
s
Dead
Live
Snow
Seismic
Mass
Roof 1
15
---
20
15
Wall
7
---
---
7
Wall
10
---
---
10
Species of Framing Lumber
Sheathing Type
Shearwall Stud Spacing
Risk Category
Wind Design Criteria
Wind Load Design Procedure
Basic Wind Speed
Surface Roughness
Wind Exposure Category
Topographic Factor
Enclosure Classification
Internal Pressure Coefficient
Seismic Design Data
Seismic Load Design Procedure
Seismic Design Category
Mapped Spectral Accelerations, MSA
Short Period Acceleration
1-Second Accelleration
Long -Period Transition Period
Spectral response coefficient
Spectral response coefficient
Site Classification
Seis. Force Resisting System
Response Modification Factor R
Seismic Response Coefficient Cs
Design Base Shear
Overstrength Factor
Deflection Amplification Factor
Allowable Drift Limit
HF
OSB
16" oc
II
2010 Envelope Procedure
110 mph
B
B
Kzt: 1.00
Enclosed Building
+/- 0.18
2010 Equiv. Lateral Force Procedure
D
SS
1.302
Sl
0.511
TL
6
SDS
0.87
SDI
0.51
D
Table 12.2-1:
A-15
Transverse
Longitudinal
6.5
6.5
0.134
0.134
2468
2790
no
2.5
Cd
4
0.020
hsx
sec.
Ibs
200529_SSSlateral_191230_Addition+Existing DC
Design Loads
Design
Loads
Dead
Live
Snow
Seismic
Assembly Reference
Mass
s
Roof 1
15
---
20
15
Wall 1
7
---
---
7
Interior Wall
Wall 2
10
---
I ---
1 10
Exterior Wall
Building Orientation and Height
Wall Lines
1
2
Stories
A B C
= T
0)
Transverse +_ 0
Trans C
J
Number of Diaphragms 1
Building Height 15.35
Shrinkage
Diaphragm 1
Framing ft 5.52 0.000 in
Story ft 9.83
I
Distribution Diaphragm
Wall VTX+, Vex VTX Wall
Line Line
Force from wall line above
Trans
1
2
0
0
0
0
0
1 350
Wind 2 576
926 0
Ibs 0
0
0
0
350 1
576 2
0
0
0
0
0
1
971
971 1
Seismic
2
1275
1275 2
2246
0
0
Ibs
0
0
0
0
0
0
0
0
2246
1 2246
Longit
Wall
Line
VTX+,
VpX
VTX
Wall
Line
A
356
356
A
wind
B
1133
1133
B
2280
C
791
791
C
Ibs
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
A
760
760 A
Seismic
B
824
824 B
2539
C
954
954 C
Ibs
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
A I B I C 1 0 1 0 1 0 1 0
200529_SSSlateral_191230_Addition+Existing DC
Wind Loads Wind Loads Help XPELWL
Ridge Elevation 15.35 ft
Eave Height 9.59 ft
Mean Roof Height, h 12.47 ft
Least Horizontal Dimension, LHD 13 ft
Transverse Direction
B Dimension 13 ft
L Dimension 15.33 ft
End Zone, 2a 6 ft
Transverse Direction (WW)
Roof Pitch 0 :12
LEVEL
Wall Area
Roof Area
(Horiz Proj)
(sq ft)
1
78
sq ft
37
sq ft
Transverse Direction (LW)
Roof Pitch 0 :12
LEVEL
Wall Area
Roof Area
(Horiz Proj)
(sq ft)
1
78
sq ft
37
sq ft
XPELBD
Longitudinal Direction (WW)
B Dimension 15.33 ft
L Dimension 13 ft
End Zone, 2a 6 ft
Longitudinal Direction (WW)
Roof Pitch 4 :12
LEVEL
Wall Area
Roof Area
(Horiz Proj)
(sq ft)
1
172
sq ft
131
sq ft
Longitudinal Direction (LW)
Roof Pitch 4 :12
LEVEL
Wall Area
Roof Area
(Horiz Proj)
(sq ft)
1
172
sq ft
131
sq ft
Wind Variables XPELWV
Basic Wind Speed, V 110 mph Topographic Factor,Kzt 1.00
Directionality Factor, Kd 0.85 Velocity Pres. Exp. Coeff. Kz 0.58
Gust Effect Factor, Gf 0.85 Velocity Pressure, gh 15.17 psf
Main Wind Force Resisting System - Diaphragm Design Loads XPEMWF
2010 Envelope Procedure
Direction
Transverse
Longitudinal
SUM
1544
3800
Load Case
T-16psf
L-16psf
1
1544
3800
200529_SSSlateral_191230_Addition+Existing W F(2)
Seismic Loads Yes
Effective seismic weiaht at Story (A
XPELSL
XPEESW
Diaphragm
height (ft) 5.52
(Ibs)
1
Roof 1
Mass (Ibs)
area (ft)
1042
15630
unit weight (psf)
15
trans - w,
18482
long - wX
20891
Walls
height (ft) 9.83
trans -wall (ft)
H
unit weight (psf)
7
10
long -wall (ft)
Wall 1
Wall
Mass (Ibs)
30
37
5703
unit weight (psf)
7
10
Wall 1
30
Wall
86
Mass (Ibs) 10522
trans - w, long - w,(
Sum of Effective Seismic Weights (Ibs) 31855 31855
200529_SSSlateral_191230_Addition+Existing EF
Mapped Spectral Accelerations XPEMSA
Ss 1.302 Fa 1.000 Sps 0.87
S, 0.511 Fv 1.500 Spy 0.51
Seismic Design Category D Seismic Importance Factor IE 1.00
Seismic Use Group II Site Classification D
2010 Equiv. Lateral Force Procedure XPEELF
Transverse Longitudinal
Approximate Period Ct = 0.020 0.020
Parameters x= 0.75 0.75
Approximate Fundamental
Period
T=
0.155 sec
0.155 sec
hn=
15.4 ft
TL =
6 sec
Transverse
Longitudinal
CS =
0.134
0.134
Ibs
EQ 12.8-2
(Maximum)
CS =
0.507
0.507
Ibs
EQ 12.8-3 / 8.4
(Minimum)
Cs =
0.038
0.038
Ibs
EQ 12.8-5
(Minimum)
CS =
0.010
0.010
Ibs
EQ 12.8-5
(Minimum)
Cs =
0.010
0.010
Ibs
EQ 12.8-6
Calculation of Seismic Response Coefficient XPESRC
Response Modification Coefficient and Seismic Response Coefficient
Dia h.
Trans
Cs
Mass
V
Long
Cs
Mass
V
1
6.5
0.134
18482
2468
6.5
0.134
20891
2790
0
6.5
0.134
13373
0
6.5
0.134
10964
0
Base Shear, ht
Vertical Distributionof Seismic Forces
Transverse
V = 2468 Ibs
k= 1.00
Longitudinal
V = 2790 Ibs
Transverse
Longitudinal
Diaph.
hX
wX
wXhXk
CVX
wX
wXhXk
CVX
1
15.3533
23742
364525.3
1.000
23742
364525.3
1.000
0
0
8112
0
0.000
8112
0
0.000
364525.3
364525.3
Diaphragm Transverse
1 2468 Ibs
0 0 Ibs
sum 2468
Longitudinal
2790 Ibs
0 Ibs
sum 2790
XPEVDS
200529_SSSlateral_191230_Addition+Existing EF
Allowable Stress Design Loads
2010 Envelope Procedure
Wind Load Combination
0.61D+0.6W+H
% of DL used in OT
60%
Wind Design Loads Fx
Transverse Longitudinal
Diaphragm Force (Ibs) Force (Ibs)
1 926 2280
Principle of Mechanics - cont.
2010 Equiv. Lateral Force Procedure
Seismic Load Combination
(0.6 - 0.14SD5)D + 0.7pQE + H
% of DL used in OT
48%
Seismic Design Loads, Fx
P = 1.30
1.30
Transverse
Longitudinal
Diaphragm
Force (Ibs)
Force (Ibs)
1
2246
2539
Where, v = shear per linear foot of shearwall
w = width of shearwall
h = height of shearwall
D = resisting dead load centered over shearwall
P = resisting dead load at end of shearwall
Shearwall calculations follow, where,
Vx
Total force in the diaphragm above story (x), pounds (Ibs)
%
Percent of Vx tributary to the shearwalls (SW) in the wall line
VDx
Force from the diaphragm above that transfers to the SW's, Ibs
VTx+f
Force from the SW's above that transfers to the SW's, Ibs
VTX
Total force in the SW's (VDx + VTx+1), Ibs
L.
Total length of SW's (Y_ w), feet (ft)
V
Linear force in the SW's (VTx/L), pounds per foot (plf)
VF
Max Tx
VS
w
h
dr
d ra
df
dfa
Twx+1
Twx
Tex+1
Tex
Greater of v induced by wind or earthquake, plf
n
12.3.4.2
Maximum uplift force of the SW's, Ibs Free Body Diagram of a ShearWall
Greater of v in the sheathing induced by wind per 2306.4.1 or earthquake per 2305.3.4, plf
Width of SW, ft
Height of SW, ft
Tributary distance of roof (used to calculate D) along the width of the SW, ft
Tributary distance of roof (used to calculate P) adjacent to the width of the SW, ft
Tributary distance of floor (used to calculate D) along the width of the SW, ft
Tributary distance of floor (used to calculate P) adjacent to the width of the SW, ft
Wind uplift force of the SW above that transfers to the SW, Ibs
Wind uplift force of the SW, Ibs
Earthquake uplift force of the SW above that transfers to the SW, Ibs
Earthquake uplift force of the SW, Ibs
200529_SSSlateral_191230_Addition+Existing DL
Wall Line
Story (x)
Direction
WSP
Dist
Wind
Shear
Seismic
Shear
SW Dimensions
Tributary Dead
Loads
Wind Uplift
Seismic Uplift
1
1
1 Trans
---
%
Vw
VE
W
h
dr
dra
df
dfa
Twx+1
Twx
Tex+1
Tex
WIND SEISMIC
VTx 350 971
Wood Shrinkage
v 15 42
v, amp'd 15 42
Cntrl'g 42
Max Tx 0 182
A (in) 0.012 0.033
1.00
29%
13
37
7.75
9.833
-99
177
0.94
11 %
10
28
3.92
9.833
-17
182
1.00
60%
1 15
42
1 13.67
9.833
1 -253
1 95
L VF VS
25.33 42 42
Wall Line
Story (x)
Direction
WSP
Dist
Wind
Shear
Seismic
Shear
SW Dimensions
Tributary Dead
Loads
Wind Uplift
Seismic Uplift
2
1
Trans
---
%
vw
V E
W
h
dr
dra
df
dfa
Twx+j
Twx
Tex,,
Tex
WIND E-QUAKE
VTx 576 1275
Wood Shrinkage
v 44 98
v, amp'd 44 98
Cntrl'g 98
Max Tx 52 658
A (in) 0.052 0.085
1.00
100%
44
98
13.00
9.833
52
658
L VF VS
13.00 98 98
200529_SSSlateral_191230_Addition+Existing FIR
MMMMM
=
Tributary Dead
Loads
WIND E-QUAKE
Wood Shrinkage
Cntrl'g 89
Max Tx 161 679
Wall Line
Story (x)
Direction
WSP
Dist
Wind
Shear
Seismic
Shear
SW Dimensions
Tributary Dead
Loads
Wind Uplift
Seismic Uplift
B
1
Long
---
%
Vw
VE
w
h
dr
dra
df
dfa
Twx+1
TwX
TeX+1
TeX
WIND E-QUAKE
VTx 1133 824
Wood Shrinkage
v 189 137
v, amp'd 189 137
Cntrl'g 137
Max Tx 1681 1209
A (in) 0.358 0.171
1.00
100%
189
137
6.00
9.833
1681
1209
L VF VS
6.00 189 137
Wall Line
Story (x)
Direction
WSP
Dist
Wind
Shear
Seismic
Shear
SW Dimensions
Tributary Dead
Loads
Wind Uplift
Seismic Uplift
C
1
Long
---
%
Vw
VE
w
h
dr
dra
df
dfa
Twx+j
Twx
Tex,,
Tex
WIND E-QUAKE
VTx 791 954
Wood Shrinkage
v 83 100
v, amp'd 83 100
Cntrl'g 100
Max Tx 668 866
A (in) 0.147 0.120
0.99
49%
82
99
4.75
9.833
663
858
1.00
51 %
1 83
100
4.88
9.833
668
866
L VF VS
9.63 100 100
200529_SSSlateral_191230_Addition+Existing FIR
Shear Transfer Connections
XPSTC
Fasteners and
Spacing
Ln
V)
Ln
Ln
Ln
Ln
Ln
Ln
Ln
0
Ln
Ln
V)
M
N
O
N
W
C)
V-
n
M
.�-i
M
7
M
l0
.N-i
♦'
a
V-
M
CO
Ln
.--I
N
t0
M
�M-I
~
M
.~-i
M
C
N
2x Plates
3x Plates
3
L
(A
uLn
ro
LO
M
Q
Ln
x
x
x
x
i
,
Q
In
C
Q
=
J
N
2
Q
u� v°
_
C� a
_
Op 01
—Co
vi
(n
Z
C
C
C
p
C
C
CO
C
J
Q
Q `�
Q u
Q u
�C
-0
io
Ln
Q
ro
'n
Ln
a
Ln
a
o
a
o
a
a
(n
a
o.
ro �
- ro
2
`o -
2
`a o-
2
a
LU
.--i
v7
LO
E
Ln
co
d
W d
In
In
Vl
in
Ln
Ln
A
150
11
24
9
48
67
46
10
33
16
101
75
110
B
265
6
13
27
38
26
6
18
9
42
42
62
Shearwall Capacities from SDPWS-2015 Table 4.3A
Tabulated
a L. MINIMUM NOMINAL Adjusted
3 s PANEL THICKNESS Nail or Staple size value for HF @ Ga
(A (inch) based on 16" oc
a
J 242 I 7/16" I I 8d @ 6"oc
1. The above allowable capacities were reduced by 2 for ASD
and are for Seismic loads. Allowable Wind loads are 1.4
greater. This office decreases the wind sheathing shear, v s,
demand by this factor rather than using the increased capacity.
That way, only one set of capacities is needed for simplicity.
260 I 242 I 15
2. Shears are
permitted to
be increased
to values
shown for
15/32-inch
sheathing...
3. G=0.43 [1-
(0.5-0.43)] _
0.93
200529_SSSlate ral_191230_Addition+Existing ST
Shear Transfer Notes
[1] TABLE 12N [pg109 NDS] Z=89 Ibs for a 16d box nail (D=0.135) in Hem -Fir G=0.43 and multiplied by
the load duration factor TABLE 11.3.1 [pg66 NDS] for wind/earthquake which is CD=1.6 found in TABLE
2.3.2 [pg11 NDS]
[2] Value from note 1 then multiplied by the Toe -Nail Factor SECTION 11.5.4 [pg88 NDS] for nominal
lateral design values Ctn=0.83
[3] the A35 is used in loading condition 4 in an F1 direction of load according to Simpson designations for
SPF/HF Lateral(133/160) Z=450 Ibs [pg331 C-C-2017]
[4]
[5] for SPSF/HF Lateral(133/160) Z=130 Ibs [pg315 C-C-2017]
[6] the H1 is used in an F1 loading according to Simpson designations for SPF/HF Lateral(133/160) Z=415
Ibs [pg315 C-C-2017]
[7] the DTC is used in an F2 loading according to Simpson designations for SPF/HF Lateral(133/160)
Z=210 Ibs [pg269 C-C-2017]
[8] TABLE 12E [pg97 NDS] Z=590 Ibs for a 1/2" diameter bolt in 1-1/2" side member of Hem -Fir G=0.43
and multiplied by the load duration factor TABLE 11.3.1 [pg66 NDS] for wind/earthquake which is CD=1.6
found in TABLE 2.3.2 [pg11 NDS] Sill plates resisting a design load greater than 350 plf shall not be less
than a 3-inch nominal member. Exception: With design load less than 600plf the sill plate is permitted to
be a 2-inch nominal member if the sill plate is anchored by two times the number of bolts required by
design.
[9] TABLE 12E [pg97 NDS] Z=860 Ibs for a 5/8" diameter bolt in 1-1/2" side member of Hem -Fir G=0.43
and multiplied by the load duration factor TABLE 10.3.1 [pg58 NDS] for wind/earthquake which is CD=1.6
found in TABLE 2.3.2 [pg11 NDS] Sill plates resisting a design load greater than 350 plf shall not be less
than a 3-inch nominal member. Exception: With design load less than 600plf the sill plate is permitted to
be a 2-inch nominal member if the sill plate is anchored by two times the number of bolts requiredby
design.
[10] TABLE 12E [pg97 NDS] Z=730 Ibs for a 1/2" diameter bolt in 2-1/2" side member of Hem -Fir G=0.43
and multiplied by the load duration factor TABLE 11.3.1 [pg66 NDS] for wind/earthquake which is CD=1.6
found in TABLE 2.3.2 [pg11 NDS]
[11] TABLE 12E [pg97 NDS] Z=1140 Ibs for a 5/8" diameter bolt in 2-1/2" side member of Hem -Fir
G=0.43 and multiplied by the load duration factor TABLE 11.3.1 [pg66 NDS] for wind/earthquake which is
CD=1.6 found in TABLE 2.3.2 [pg11 NDS]
200529_SSSlate ral_191230_Addition+Existing ST
Shear Wall Summary
Rio
Rio
JU,
,..
Width
SW
VF
Stressed
vs
Stressed
Notes
1 1
25.33
A
6
42
28%
42
18%
2 1
13.00
A
6
98
65%
98
41 %
A 1
8.50
A
6
89
60%
89
37%
B 1
6.00
B
6
189
71 %
137
57%
C 1
9.63
A
6
100
66%
100
41 %
Gray Scaled Areas draw attention to the fact that 80% demand (corresponding to a 125% capacity) has
been specified to address horizontal irregularities. XPIRR
200529_SSSlateral_191230_Addition+Existing SW
Holdown Summary
J
(n
Uplift W
Uplift E
Holdown
1 1
0
182
2 1
52
658
A 1
161
679
B 1
1681
1209
HTT5
C 1
668
866
Holdown/
Strap
Capacity
Wind
Capacity
Midwall
Wind
Capacity
Corner
Wind
Capacity
Endwall
Seismic
Capacity
Midwall
Seismic
Capacity
Corner
Seismic
Capacity
Endwall
4015 @
42%
3610 @
47%
3610 @
47%
3610 @
47%
2550 @
47%
2550 @
47%
2550 @
47%
200529_SSSlateral_191230_Addition+Existing SW
Horizontal Diaphragm Calculations
XPHDC
ANSI/AF&PA SDPWS-2008
Table 4.2C
Unblocked DF
Panel Thickness
Nails
Case 1
All other
Roof Diaphragm
1 7/16"
8d
230
170
Floor Diaphragm
1 23/32" (19/32")
10d
285
215
The minimum depth of horizontal diaphragm required to
provide shear capacity for SEISMIC forces
The minimum depth of horizontal diaphragm required to
provide shear capacity for WIND forces
Unblocked HF
Case 1
All other
213.9
158.1
265.05
199.95
Line
Story
Wind
Seismic
Middle
or end
Roof or
Floor
Case
Shear
Cap'
Specify
a
Length
Shear
Stress
wind
Shear
Stress
Seis
1
1
350
971
E
R
All other
158.1
2.2
6.1
2.1
576
1,275
E
R
All other
158.1
1 3.6
8.1
A
1
356
760
E
R
All other
158.1
2.3
4.8
B
1
1,133
824
E
R
All other
158.1
7.2
5.2
C
1
791
954
E
R
All other
158.1
5.0
6.0
Gray Scaled Areas draw attention to the fact that a calculation of shear XPIRR
transfer through the horizontal diaphragm is being
200529_SSSlateral_191230_Addition+Existing HD
SSSOUND STRUCTURAL SOLUTIONS
E N G I N E E R S
GRAVITY ANALYSIS
6628 212th Street SW, Suite 205 - Lynnwood, WA 98036 - Ph: 425-778-1023 - Fax: 206-260-7490
General Beam File =SAJobs1s201s20041s2004017-7216SoundviewDr1wo2005291200601_enercalctrib_190129.ec6.
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.1.31 .
DESCRIPTION: 1-1 (a)
General Beam Properties
Elastic Modulus 29,000.0 ksi
Span #1 Span Length = 4.667 ft Area = 10.0 inA2 Moment of Inertia = 100.0 inA4
Span #2 Span Length = 15.333 ft Area = 10.0 inA2 Moment of Inertia = 100.0 inA4
D(0.03) S(0.04)
X
Span = 4.667 ft
Applied Loads
Load for Span Number 1
Uniform Load : D = 0.0150, S = 0.020 ksf, Tributary Width = 2.0 ft, (ROOF)
Load for Span Number 2
Uniform Load : D = 0.0150, S = 0.020 ksf, Tributary Width = 2.0 ft, (ROOF)
DESIGN SUMMARY
Span = 15.333 ft
Service loads entered. Load Factors will be applied for calculations.
Maximum Bending = 1.694 k-ft
Load Combination +D+S
Span # where maximum occurs Span # 2
Location of maximum on span 8.374 ft
Maximum Deflection
Max Downward Transient Deflection 0.013 in
Max Upward Transient Deflection -0.009 in
Max Downward Total Deflection 0.024 in
Max Upward Total Deflection -0.016 in
Maximum Forces & Stresses for Load Combinations
Maximum Shear =
Load Combination
Span # where maximum occurs
Location of maximum on span
13632
12314
7789
7036
0.5864 k
+D+S
Span # 1
4.667 ft
Load Combination Max Stress Ratios
Summary of Moment Values (k-ft)
Shear Values (k)
Segment Length Span # M V
Mmax +
Mmax -
Ma - Max Mnx Mnx/Omega Cb Rm
Va Max
Vnx Vnx/Omega
Overall MAXimum Envelope
Dsgn. L = 4.67 ft 1
-0.76
0.76
0.59
Dsgn. L = 15.33 ft 2
1.69
-0.76
1.69
0.59
D Only
Dsgn. L = 4.67 ft 1
-0.33
0.33
0.25
Dsgn. L = 15.33 ft 2
0.73
-0.33
0.73
0.25
+D+S
Dsgn. L = 4.67 ft 1
-0.76
0.76
0.59
Dsgn. L = 15.33 ft 2
1.69
-0.76
1.69
0.59
+D+0.750S
Dsgn. L = 4.67 ft 1
-0.65
0.65
0.50
Dsgn. L = 15.33 ft 2
1.45
-0.65
1.45
0.50
+1.140D
Dsgn. L = 4.67 ft 1
-0.37
0.37
0.29
Dsgn. L = 15.33 ft 2
0.83
-0.37
0.83
0.29
+1.105D+0.750S
Dsgn. L = 4.67 ft 1
-0.69
0.69
0.53
Dsgn. L = 15.33 ft 2
1.53
-0.69
1.53
0.53
+0.60D
Dsgn. L = 4.67 ft 1
-0.20
0.20
0.15
Dsgn. L = 15.33 ft 2
0.44
-0.20
0.44
0.15
+0.460D
Dsgn. L = 4.67 ft 1
-0.15
0.15
0.12
Dsgn. L = 15.33 ft 2
0.33
-0.15
0.33
0.12
General Beam File=S:\Jobs1s201s20041s2004017-7216SoundviewDr1wo2005291200601_enercalctrib_190129.ec6.
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.1.31 .
DESCRIPTION: 1-1 (a)
Overall Maximum Deflections
Load Combination Span Max. "-" Defl Location in Span Load Combination Max.'W' Defl Location in Span
1 0.0000 0.000 +D+S-0.0159 0.000
+D+S 2 0.0236 8.020 0.0000 0.000
Vertical Reactions
Load Combination
Overall MAXimum
Overall MINimum
D Only
+D+S
+D+0.750S
+0.60D
S Only
Support Support Support
0.391 0.209
0.913 0.487
0.783 0.417
0.235 0.125
0.522 0.278
Support notation : Far left is #1 Values in KIPS
General Beam File =SAJobs1s201s20041s2004017-7216SoundviewDr1wo2005291200601_enercalctrib_190129.ec6.
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.1.31 .
DESCRIPTION: 1-1 (c)
General Beam Properties
Elastic Modulus 29,000.0 ksi
Span #1 Span Length = 4.667 ft Area = 10.0 inA2 Moment of Inertia = 100.0 inA4
Span #2 Span Length = 15.333 ft Area = 10.0 inA2 Moment of Inertia = 100.0 inA4
D(0.03) S(0.04)
X
Span = 4.667 ft
Applied Loads
Load for Span Number 1
Uniform Load : D = 0.0150, S = 0.020 ksf, Tributary Width = 2.0 ft, (ROOF)
Load for Span Number 2
Uniform Load : D = 0.0150 ksf, Tributary Width = 2.0 ft, (ROOF)
DESIGN SUMMARY
Span = 15.333 ft
Service loads entered. Load Factors will be applied for calculations.
Maximum Bending = 0.827 k-ft
Load Combination +1.140D
Span # where maximum occurs Span # 2
Location of maximum on span 8.374 ft
Maximum Deflection
Max Downward Transient Deflection 0.008 in
Max Upward Transient Deflection -0.004 in
Max Downward Total Deflection 0.010 in
Max Upward Total Deflection -0.007 in
Maximum Forces & Stresses for Load Combinations
Maximum Shear =
Load Combination
Span # where maximum occurs
Location of maximum on span
14714
46077
18176
16418
0.3267 k
+D+S
Span # 1
4.667 ft
Load Combination Max Stress Ratios
Summary of Moment Values (k-ft)
Shear Values (k)
Segment Length Span # M V
Mmax +
Mmax -
Ma - Max Mnx Mnx/Omega Cb Rm
Va Max
Vnx Vnx/Omega
Overall MAXimum Envelope
Dsgn. L = 4.67 ft 1
-0.76
0.76
0.33
Dsgn. L = 15.33 ft 2
0.83
-0.76
0.83
0.30
D Only
Dsgn. L = 4.67 ft 1
-0.33
0.33
0.25
Dsgn. L = 15.33 ft 2
0.73
-0.33
0.73
0.25
+D+S
Dsgn. L = 4.67 ft 1
-0.76
0.76
0.33
Dsgn. L = 15.33 ft 2
0.54
-0.76
0.76
0.28
+D+0.750S
Dsgn. L = 4.67 ft 1
-0.65
0.65
0.28
Dsgn. L = 15.33 ft 2
0.59
-0.65
0.65
0.27
+1.140D
Dsgn. L = 4.67 ft 1
-0.37
0.37
0.29
Dsgn. L = 15.33 ft 2
0.83
-0.37
0.83
0.29
+1.105D+0.750S
Dsgn. L = 4.67 ft 1
-0.69
0.69
0.30
Dsgn. L = 15.33 ft 2
0.66
-0.69
0.69
0.30
+0.60D
Dsgn. L = 4.67 ft 1
-0.20
0.20
0.15
Dsgn. L = 15.33 ft 2
0.44
-0.20
0.44
0.15
+0.460D
Dsgn. L = 4.67 ft 1
-0.15
0.15
0.12
Dsgn. L = 15.33 ft 2
0.33
-0.15
0.33
0.12
General Beam File=S:\Jobs1s201s20041s2004017-7216SoundviewDr1wo2005291200601_enercalctrib_190129.ec6.
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.1.31 .
DESCRIPTION: 1-1
Overall Maximum Deflections
Load Combination Span Max. "-" Defl Location in Span Load Combination Max.'W' Defl Location in Span
1 0.0000 0.000 +D+S-0.0013 0.000
+D+S 2 0.0085 8.492 0.0000 0.000
Vertical Reactions
Load Combination
Overall MAXimum
Overall MINimum
D Only
+D+S
+D+0.750S
+0.60D
S Only
Support Support Support
0.276 0.094
0.645 0.219
0.553 0.187
0.166 0.056
0.368 0.125
Support notation : Far left is #1 Values in KIPS
Wood Beam File = S:1Jobs1s201s20041s2004017 - 7216 Soundview Drlwo 200529\200601_enercalc tdb_190129.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.1.31
DESCRIPTION: 1-2
CODE REFERENCES
Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set: IBC 2015
Material Properties
Analysis Method: Allowable Stress Design
Fb +
900 psi
E : Modulus of Elasticity
Load Combination iBC 2015
Fb -
900 psi
Ebend- xx 1600ksi
Fc - Prll
1350 psi
Eminbend - xx 580 ksi
Wood Species : Douglas Fir -Larch
Fc - Perp
625 psi
Wood Grade : No.2
Fv
180 psi
Ft
575 psi
Density 31.21 pcf
Beam Bracing : Beam is Fully Braced against lateral -torsional buckling
4x8
Span =6.0ft
Applied Loads Service loads entered. Load Factors will be applied for calculations.
Uniform Load : D = 0.0150, S = 0.020 ksf, Tributary Width =17.50 ft, (ROOF)
Maximum Bending Stress Ratio
=
0.8021
Maximum Shear Stress Ratio
=
0.525 :1
Section used for this span
4x8
Section used for this span
4x8
=
1,078.70psi
=
108.62 psi
=
1,345.50psi
=
207.00 psi
Load Combination
+D+S
Load Combination
+D+S
Location of maximum on span
=
2.990ft
Location of maximum on span
=
0.000 ft
Span # where maximum occurs
=
Span # 1
Span # where maximum occurs
=
Span # 1
Maximum Deflection
Max Downward Transient Deflection
0.058 in
Ratio =
1247>=360
Max Upward Transient Deflection
0.000 in
Ratio =
0 <360
Max Downward Total Deflection
0.101 in
Ratio =
713>=240
Max Upward Total Deflection
0.000 in
Ratio =
0 <240
Maximum Forces & Stresses for Load Combinations
Load Combination Max Stress Ratios
Moment Values
Shear Values
Segment Length Span # M
V
Cd
C FN C i
Cr
C m
C t C L M fb
Fb
V
fv
Fv
D Only
0.00
0.00
0.00
0.00
Length = 6.0 ft 1 0.439
0.287
0.90
1.300 1.00
1.00
1.00
1.00 1.00 1.18 462.30
1053.00
0.79
46.55
162.00
+D+S
1.300 1.00
1.00
1.00
1.00 1.00
0.00
0.00
0.00
0.00
Length = 6.0 ft 1 0.802
0.525
1.15
1.300 1.00
1.00
1.00
1.00 1.00 2.76 1,078.70
1345.50
1.84
108.62
207.00
+D+0.750S
1.300 1.00
1.00
1.00
1.00 1.00
0.00
0.00
0.00
0.00
Length = 6.0 ft 1 0.687
0.450
1.15
1.300 1.00
1.00
1.00
1.00 1.00 2.36 924.60
1345.50
1.58
93.10
207.00
+1.140D
1.300 1.00
1.00
1.00
1.00 1.00
0.00
0.00
0.00
0.00
Length = 6.0 ft 1 0.282
0.184
1.60
1.300 1.00
1.00
1.00
1.00 1.00 1.35 527.02
1872.00
0.90
53.07
288.00
+1.105D+0.750S
1.300 1.00
1.00
1.00
1.00 1.00
0.00
0.00
0.00
0.00
Length = 6.0 ft 1 0.520
0.340
1.60
1.300 1.00
1.00
1.00
1.00 1.00 2.49 973.14
1872.00
1.66
97.99
288.00
+0.60D
1.300 1.00
1.00
1.00
1.00 1.00
0.00
0.00
0.00
0.00
Length = 6.0 ft 1 0.148
0.097
1.60
1.300 1.00
1.00
1.00
1.00 1.00 0.71 277.38
1872.00
0.47
27.93
288.00
+0.460D
1.300 1.00
1.00
1.00
1.00 1.00
0.00
0.00
0.00
0.00
Length = 6.0 ft 1 0.114
0.074
1.60
1.300 1.00
1.00
1.00
1.00 1.00 0.54 212.66
1872.00
0.36
21.41
288.00
Wood Beam File = S:1Jobs\s201s20041s2004017 - 7216 Soundview Dhwo 200529\200601_enercalc trib_190129.ec6 .
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.1.31 .
DESCRIPTION: 1-2
Overall Maximum Deflections
Load Combination Span Max.'-" Defl Location in Span Load Combination
+D+S
Vertical Reactions
Load Combination
Overall MAXimum
Overall MINimum
D Only
+D+S
+D+0.750S
+0.60D
S Only
1 0.1010 3.010
Support notation : Far left is #1
Support 1 Support 2
1.838 1.838
1.050 1.050
0.788 0.788
1.838 1.838
1.575 1.575
0.473 0.473
1.050 1.050
Max.'W' Defl Location in Span
0.0000 0.000
Values in KIPS
SSSOUND STRUCTURAL SOLUTIONS
E N G I N E E R S
FOUNDATION
ANALYSIS
6628 212th Street SW, Suite 205 - Lynnwood, WA 98036 - Ph: 425-778-1023 - Fax: 206-260-7490
TEF - THICKENED EDGE FOOTING
Dead
Live
Snow
Roof
15
20
Deck
15
40
20
Floor
12
40
Wall
10
Fnd
100
Bearing Capacity
2000
(0-A)
FIY � IVA
d1YL
R
MF RJYiG
1
Y'
MW
� f
0j;W r--OrIW5 U"=W*14 l�
TEF ~ TH[CKM EDGE fC70 144
h -s
Tributary
Dimension
Type of Load
Dead
Load
Live Load
Snow
Load
Total
Load
11.5
Roof
172.5
0
230
402.5
10
Wall
100
0
0
1 100
4
Fnd
48
160
0
208
Total
320.5
160
230
710.5
Minimum
Ft Width
USE (In)
Stress
0.35525
12
36%
SSSOUND STRUCTURAL SOLUTIONS
E N G I N E E R S
DETAIL ANALYSIS
6628 212th Street SW, Suite 205 - Lynnwood, WA 98036 - Ph: 425-778-1023 - Fax: 206-260-7490
BHS - BEAM & HEADER SUPPORT
2x BM Species
HF
Stud Species
HF
Stud Height
9.833
Wk Braced
Yes
PERPENDICULAR - REQUIRED STUDS:
BEAM
2x4
2x6
2x8
2-2x (SAWN)
4x (SAWN)
2-2x4
2-2x6
2-2x8
3-1/2 (MANF)
3-2x (SAWN)
6x (SAWN)
3 - 2x4
3-2x6
3-2x8
5-1/4" (MANF)
6-3/4 (GLB)
4 - 2x4
4-2x6
4-2x8
7 (MANF)
1
G.T.
3 - 2x4
3 - 2x6
3 - 2x8
PARALLEL
- REQUIRED
STUDS:
BEAM
2x4
2x6
2x8
2-2x (SAWN)
4x (SAWN)
2-2x4
2-2x6
2-2x8
3-1/2 (MANF)
3-2x (SAWN)
6x (SAWN)
3 - 2x4
3-2x6
3-2x8
5-1/4" (MANF)
6-3/4 (GLB)
4 - 2x4
4 - 2x6
7 (MANF)
G.T.
3 - 2x4
HEADER -
REQUIRED
TRIMMERS:
HEADER
2x4
2x6
2x8
2-2x (SAWN)
4x (SAWN)
1 - 2x4
1 - 2x6
1 - 2x8
3-1/2 MANF
3-2x (SAWN)
6x (SAWN)
- - -
2-2x6
2-2x8
5-1/4" MANF
8x (SAWN)
6-3/4 (GLB)
- - -
- - -
3 - 2x8
7 MANF
CAPACITY:
H = 9.833 ft HF
BEAM
2x4
2x6
2x8
727 (SAWN)
4x (SAWN)
3-1/2 (MANF)
3383#
6682#
8808#
3383#
B
6682#
PC
8808#
PC
3-2x (SAWN)
6x (SAWN)
5-1/4" (MANF)
5074#
10023#
132137
5074# B
10023#
PC
13213#
PC
6-3/4 (GLB)
7 (MANF)
6766# B
I
13365#
PC
17617#
PC
G.T.
1 4252#
6682#
8808#
CAPACITY:
H = 9.833 ft HF
BEAM
2x4
2x6
2x8
72x (SAWN)
4x (SAWN)
3-1/2 (MANF)
3383#
3645#
3645#
3383#
B
4252#
PC
4252#
PC
3-2x (SAWN)
6x (SAWN)
5-1/4" (MANF)
- - -
8201#
8201#
_ _ _
9568#
PC
9568#
PC
6-3/4 (GLB)
7 (MANF)
_ _ _
I
16402#
I PC
G.T.
5074#
1 5467#
5467#
CAPACITY:
H = 9.833 ft HF
HEADER
2x4
2x6
2x8
7-2x (SAWN)
4x (SAWN)
3-1/2 MANF
1691#
1822#
1822#
1691#
B
2126#
PC
2126#
PC
3-2x (SAWN)
6x (SAWN)
5-1/4" MANF
- - -
5467#
5467#
6378#
PC
6378#
PC
8x (SAWN)
6-3/4 (GLB)
7 MANF
- - -
- - -
12301#
PC